Abstract:
A digital video (DV) storage system comprises an interface module receiving an incoming signal and converting the incoming signal into an incoming bit-stream; a DV demuxer directly connected to the interface module for receiving the incoming bit-stream, wherein the DV demuxer de-multiplexes received blocks in the incoming bit-stream into at least video blocks being in video sections and audio blocks being in audio sections; and memory coupled to the DV demuxer for storing the video blocks and audio blocks. By directly connecting the interface module to the DV demuxer, and by not buffering the incoming bit-stream outside the interface module and the DV demuxer, the memory bandwidth requirement of the memory is greatly reduced, and the interface module and the DV demuxer can be easily implemented together in a single IC.
Abstract:
A three-dimensional (3D) display system includes a liquid crystal display and a directional backlight module. The backlight module disposed behind the liquid crystal display includes a light-guide plate, a focusing layer, a left backlight source, a right backlight source, and a first V-shaped micro-grooved and a second V-shaped micro-grooved structures of the light-guide plate. The focusing layer is disposed between the light-guide plate and the liquid crystal display. The 3D display method is to instantly switch on and off the left and the right backlight sources to alternately emit the light from the left side and right side of light-guide plate. By means of the first and the second V-shaped micro-grooved structure, the light transmitted from the light-guide plate is focused by the focusing layer within a particular range of angles and passing through the liquid crystal layer for being alternately projected to form a 3D image.
Abstract:
A liquid crystal display (LCD) panel includes an upper substrate, a lower substrate below the upper substrate and a sealant employed between the upper substrate and the lower substrate. There is a first covering layer on the lower substrate and a second covering layer on the first covering layer and wherein the second covering layer has at least an opening, which exposes a portion of the first covering layer. The sealant contacts with the second covering layer and also contacts the portion of the first covering layer via the opening so that the upper substrate and the lower substrate are adhered.
Abstract:
A pixel structure including a scan line, a data line, an active device, a shielding electrode, and a pixel electrode is provided on a substrate. The data line includes an upper conductive wire and a bottom conductive wire. The upper conductive wire is disposed over and across the scan line. The bottom conductive wire is electrically connected to the upper conductive wire. The active device is electrically connected to the scan line and the upper conductive wire. The shielding electrode is disposed over the bottom conductive wire. The pixel electrode disposed over the shielding electrode is electrically connected to the active device. In addition, parts of the pixel electrode and parts of the shielding electrode form a storage capacitor.
Abstract:
A pixel element includes a transistor, a pixel electrode and a storage capacitor. The transistor is a switch device of the pixel element. A data signal is applied to the pixel electrode by switching the transistor. The storage capacitor includes the first electrode and the second electrode. Several holes are formed on a surface of the first electrode. Therefore, layers disposed over the first electrode duplicate the shape of the holes, so that the layers have rough surfaces, for increasing the reflectivity.
Abstract:
Systems and methods for stream format conversion. A stream format conversion system converts data from a TS format to a PS format by selecting TS packets according to PID, filtering out TS headers and PES headers to obtain ES format data, and inserting PES and PS headers into the ES format data to generate PS packets.
Abstract:
A liquid crystal display panel comprises a color filter substrate, a thin film transistor array substrate, and a liquid crystal layer sealed between the two substrates. The color filter substrate has a plurality of first spacers and a plurality of second spacers thereon. The thin film transistor array substrate has a plurality of recesses for containing the second spacers. The ratio of the number of the second spacers to the number of the first spacers is between about 10 and about 90.
Abstract:
A pixel element includes a transistor, a pixel electrode and a storage capacitor. The transistor is a switch device of the pixel element. A data signal is applied to the pixel electrode by switching the transistor. The storage capacitor includes the first electrode and the second electrode. Several holes are formed on a surface of the first electrode. Therefore, layers disposed over the first electrode duplicate the shape of the holes, so that the layers have rough surfaces, for increasing the reflectivity.
Abstract:
An electrode structure for use in a transflective liquid crystal display device having a plurality of pixels is disclosed. Each pixel has a reflective region and a transmissive region. The electrode structure at least comprises a first transparent electrode, a reflective electrode and a second transparent electrode. The first transparent electrode is disposed within the transmissive region, while the reflective electrode and the second transparent electrode formed above the reflective electrode are disposed within the reflective region. The area of the second transparent electrode is smaller than the area of the reflective electrode.
Abstract:
A display comprises a driving circuit region and a pixel region electrically connected to the driving circuit region. The pixel region includes a micro-reflective pixel structure with a reflective electrode, a transparent pixel structure with a transparent electrode, and a dielectric layer formed on the reflective electrode, so that the transparent electrode, formed on the dielectric layer, electrically connects to the reflective electrode.