Abstract:
A method includes determining a state of operational devices in a second group coupled with a second router onboard a second vehicular unit of a vehicle consist, registering an operational device in the second group based on the determined state, and transmitting a data message from an operational device in a first group of operational devices to the second router via a first router and a communication pathway of the vehicle consist. The first group is coupled with the first router onboard a first vehicular unit. The operational devices in the first and second groups perform functions of the respective first vehicular unit and second vehicular unit. The first and second routers are connected with each other by the communication pathway. The method also includes communicating the data message to the at least one of the operational devices in the second group that are registered with the second router.
Abstract:
A system includes a router transceiver unit that is configured to be disposed on-board a vehicle system. The vehicle system may have at least a source vehicle and a separate linked vehicle that are mechanically linked with each other to travel together along a route and that are communicatively linked with each other through a system network of the vehicle system. The router transceiver unit is configured to be communicatively coupled to a requesting operational component of the source vehicle and the system network. The router transceiver unit is also configured to receive a local data packet from the requesting operational component that is directed toward a target operational component of the linked vehicle. The router transceiver unit includes an encapsulation module that is configured to transform the local data packet into an in-tunnel data packet, where the local and in-tunnel data packets have different packet formats.
Abstract:
A method includes determining a state of operational devices in a second group coupled with a second router onboard a second vehicular unit of a vehicle consist, registering an operational device in the second group based on the determined state, and transmitting a data message from an operational device in a first group of operational devices to the second router via a first router and a communication pathway of the vehicle consist. The first group is coupled with the first router onboard a first vehicular unit. The operational devices in the first and second groups perform functions of the respective first vehicular unit and second vehicular unit. The first and second routers are connected with each other by the communication pathway. The method also includes communicating the data message to the at least one of the operational devices in the second group that are registered with the second router.
Abstract:
A locomotive control system includes a mobile platform that moves under remote and/or autonomous control, a sensor package supported by the mobile platform that obtains information relating to a component of a railroad, and one or more processors that receive the sensor information and analyze the information in combination with other information that is not obtained from the sensor package. The processors also generate an output that displays information relating to one or more of a status, a condition, and/or a state of health of the component of the railroad; initiates an action to change an operational state of the component; identifies a hazard to one or more locomotives traveling within the railroad; and/or collects the information relating to the component. Optionally, the component is not communicatively coupled to an information network and the mobile platform provides the information obtained by the sensor package to the information network.
Abstract:
A camera system and method capture image data with a camera, a data storage device electrically connected to the camera and configured to store the video data and/or a communication device electrically connected to the camera and configured to communicate the image data to a system receiver located remote from the camera. The system receiver may be located onboard a vehicle such that an operator can carry the camera off board the vehicle and communicate the image data back to the vehicle, when performing, for example, work on the vehicle or inspecting the vehicle or the environs of the vehicle.
Abstract:
An image management system includes a controller and one or more analysis processors. The controller is configured to receive search parameters that specify at least one of operational data or a range of operational data of one or more vehicle systems. The one or more analysis processors are configured to search remotely stored image data based on the search parameters to identify matching image data. The remotely stored image data was obtained by one or more imaging systems disposed onboard the one or more vehicle systems, and are associated with the operational data of the one or more vehicle systems that was current when the remotely stored image data was acquired. The one or more analysis processors also are configured to obtain the matching image data having the operational data specified by the search parameters and to present the matching image data to an operator.
Abstract:
A communication system in a vehicle consist includes a router that is configured to monitor an operational status of a plurality of network channels across a plurality of vehicles in the consist, and to route messages through one or more of the network channels in dependence upon the monitored operational status of the network channels.
Abstract:
An aerial camera system includes an aerial device disposed onboard a non-aerial vehicle as the non-aerial vehicle moves along a route. The aerial device also can be configured to fly above the route during movement of the vehicle along the route. The camera unit is configured to be disposed onboard the aerial device and to generate image data during flight of the aerial device. The one or more image analysis processors are configured to examine the image data and to identify a hazard disposed ahead of the non-aerial vehicle along a direction of travel of the non-aerial vehicle based on the image data. A method for identifying route-related hazards using image data obtained from a camera unit on an aerial device.
Abstract:
A system includes a first communication module and a first ordering determination module. The first communication module is configured to be disposed onboard a first vehicle of a vehicle consist and to communicate individual messages that are targeted for communication with respective individual second vehicles of the vehicle consist. The first ordering determination module is configured to be disposed onboard the first vehicle of the vehicle consist, and to determine an order of the first vehicle and one or more of the second vehicles in the consist using message characteristic information. The message characteristic information corresponds to a transmission characteristic of the individual messages.
Abstract:
A vehicle control system includes a controller that communicates between a first vehicle and a second vehicle and/or a monitoring device in a vehicle system. The controller determines a communication loss and, responsive to determining the communication loss, switches to communicating via a different communication path. The controller also determines an operational restriction on movement of the vehicle system based on the communication loss that is determined, obtains a transitional plan that designates operational settings of the vehicle system at one or more different locations along a route being traveled by the vehicle system, different distances along the route being traveled by the vehicle system, and/or different times. The controller automatically changes the movement of the vehicle system according to the operational settings designated by the transitional plan to reduce the movement of the vehicle system to or below the operational restriction.