Abstract:
A method is provided for use with a vehicle collision system. The method includes detecting one or more object(s) in a host vehicle's field-of-view, calculating time-to-pass estimates for each of the detected object(s), wherein the time-to-pass estimates represent an expected time for a reference plane of the host vehicle to pass a reference plane of the detected object(s), and determining a potential collision between the host vehicle and the one or more detected object(s) based on the time-to-pass estimates.
Abstract:
A method for providing display information for preset options using a vehicle onboard computer system is provided. The method replaces a default screen display with a selection screen display for a designated period of time, wherein the selection screen display comprises a plurality of user-selectable preset options; and displays associated broadcast information at each of the plurality of user-selectable preset options.
Abstract:
According to one aspect, a distance determination system for a vehicle includes an apparatus for generating and displaying a pattern generated by a holographic encoded medium in operable communication with an actuator and in communication with an electromagnetic radiation source configured to produce coherent electromagnetic waves. The distance determination system also includes an imager and a distance determination module in communication with the imager. The imager is configured to acquire image data representative of a field of view from the vehicle. The distance determination module is configured to locate at least one feature of the pattern in the image data and determine an estimated distance between the vehicle and the at least one feature based at least in part on a known position of the apparatus, a known position of the imager, and a layout of the pattern.
Abstract:
An apparatus for generating and displaying a projected digital image includes an actuator, a holographic encoded medium with a holographic pattern, a light source, and a controller. The holographic encoded medium is disposed in operable communication with the actuator. The light source is configured to produce a coherent light disposed in optical communication with the holographic encoded medium. The controller is operable to control synchronization of the coherent light from the light source with a position of the holographic encoded medium as driven by the actuator to produce the projected digital image on a projection surface based on directing the coherent light to different portions of the holographic pattern at different times.
Abstract:
A vehicle window control panel for controlling a plurality of vehicle window assemblies comprises a common window control switch and a plurality of selector interfaces. The common window control switch is configured for controlling operation of a window assembly when the window assembly occupies an active state. The plurality of selector interfaces is electrically coupled to the common window control switch, and each of the plurality of selector interfaces is associated with an associated window assembly and configured for selectively coupling the associated window assembly to the common window control switch so as to cause the associated window assembly to occupy an active state. Each of the plurality of selector interfaces is also configured for selectively decoupling the associated window assembly from the common window control switch so as to cause the associated window assembly to occupy an inactive state.
Abstract:
A system and method are provided for aiding an operator in operating a vehicle. In one embodiment, a system includes a sensor system configured to generate sensor data sensed from an environment of the vehicle. The system further includes a control module configured to, by a processor, determine a scene of the environment based on the sensor data, memorize a shape of at least one feature in the scene, modify video data based on the memorized shape, and present the modified video data for display to the operator.
Abstract:
A method and apparatus for initiating display of a forward view are provided. The method includes detecting an activation of garage door control, determining whether a forward moving gear is selected, and displaying a forward view in response to detecting the activation of the garage door control and determining that the forward moving gear is selected.
Abstract:
A method and system for generating a combined rearview image of an area behind a vehicle that is towing a trailer, the method including: capturing a first image from a vehicle camera that is installed on the vehicle, the first image being comprised of an area behind the vehicle; capturing a second image from a trailer camera that is installed on the trailer, the second image being comprised of an area behind the trailer; determining an obstructed viewing region within the first image, the obstructed viewing region being a region of the first image in which the trailer resides; overlaying the second image on the first image and at least partially within the obstructed viewing region; and inserting graphics in the first image, in the second image, and/or in a patch region within the obstructed viewing region and between the second image and the first image.
Abstract:
Methods, systems, and vehicles are provided for retaining data in a vehicle. In various embodiments, the vehicle includes a sensor, a processor, and a memory. The sensor is configured to sense an aspect of the vehicle. The processor is configured to receive data from the sensor, sample the data at a first rate and retain the data at a second rate that is less than the first rate while the vehicle is in operation. The memory is in communication with the processor, and includes a plurality of storage locations each identified with a unique address. The processor is further configured to determine a current storage location address for a latest sample of the data at the first rate such that older samples of data are retained at the second rate less frequent than the first rate while the vehicle is in operation.