Abstract:
An electrode material for use in an electrochemical cell, like a lithium-ion battery, is provided. The electrode material may be a negative electrode comprising graphite, silicon, silicon-alloys, or tin-alloys, for example. By avoiding deposition of transition metals, the battery substantially avoids charge capacity fade during operation. The surface coating is particularly useful with negative electrodes to minimize or prevent deposition of transition metals thereon in the electrochemical cell. The coating has a thickness of less than or equal to about 40 nm. Methods for making such materials and using such coatings to minimize transition metal deposition in electrochemical cells are likewise provided.
Abstract:
Porous, amorphous lithium storage materials and a method for making these materials are disclosed herein. In an example of the method, composite particles of a lithium storage material in an amorphous phase and a material that is immiscible with the lithium storage material are prepared. Phase separation is induced within the composite particles to precipitate out the amorphous phase lithium storage material and form phase separated composite particles. The immiscible material is chemically etched from the phase separated composite particles to form porous, amorphous lithium storage material particles.
Abstract:
An electrode material for use in an electrochemical cell, like a lithium-ion battery, is provided. The electrode material may be a negative electrode comprising graphite, silicon, silicon-alloys, or tin-alloys, for example. By avoiding deposition of transition metals, the battery substantially avoids charge capacity fade during operation. The surface coating is particularly useful with negative electrodes to minimize or prevent deposition of transition metals thereon in the electrochemical cell. The coating has a thickness of less than or equal to about 40 nm. Methods for making such materials and using such coatings to minimize transition metal deposition in electrochemical cells are likewise provided.
Abstract:
A battery that cycles lithium ions includes a negative electrode, a positive electrode, and a separator sandwiched between opposed major facing surfaces of the negative and positive electrodes. The separator has an open microporous structure and includes a polyolefin having a crosslinked structure. When the separator is heated at a temperature of greater than or equal to about 145 degrees Celsius for about 1 hour, the separator has thermal shrinkage in directions parallel to the opposed major facing surfaces of the negative and positive electrodes of less than or equal to about 5%. The separator may be manufactured from a precursor film having an open microporous structure and comprising linear or branched chain polyolefin molecules. The precursor film may be exposed to a source of free radicals such that covalent bonds form between the polyolefin molecules and form a crosslinked polyolefin having a relatively high molecular weight.
Abstract:
A sodium ion battery includes an anode, a cathode, a separator and an electrolyte. The anode includes an anode active layer, the cathode includes a cathode active layer and the separator includes a porous film. At least one of the anode active layer, the cathode active layer or the separator have an anode zeolite layer, a cathode zeolite layer or a separator zeolite layer respectively disposed thereon.
Abstract:
An electrolyte composition for electrochemical cells including a silicon-containing electrode is provided herein as well as electrochemical cells including the electrolyte composition. The electrolyte composition includes a lithium salt, fluoroethylene carbonate (FEC), a linear carbonate, vinylene carbonate, and a fluorosilane additive. The FEC and the linear carbonate are present in the electrolyte composition in a ratio of about 1:3 v/v to about 1:9 v/v.
Abstract:
A thermal barrier component for an electrochemical cell (e.g., a battery) includes a mat, a functional material, and a polymer binder. The mat includes a porous matrix. The functional material is in pores of the porous matrix. The functional material includes an oxide. In certain aspects, the functional material may be a composite material. The polymer binder is in contact with the porous matrix and the functional material. At least one of the porous matrix, the functional material, and the polymer binder is configured to serve as an intumescent carbon source. The oxide is configured to catalyze thermal degradation of the intumescent carbon source to form intumescent carbon at a first temperature. The first temperature is greater than or equal to about 300° C. The thermal barrier component is configured to mitigate thermal runaway in an electrochemical cell. The thermal barrier component may include one or more layers.
Abstract:
An electrode for an electrochemical cell is provided. The electrode includes a carbon membrane having a first face and an opposing second face, wherein at least a portion of the carbon membrane is modified to include an elevated number of nucleation sites for lithium relative to the carbon membrane when unmodified.
Abstract:
The present disclosure relates to a negative electrode material and methods of preparation and use relating thereto. The electrode material comprises a plurality of electroactive material particles, where each electroactive material particle includes an electroactive material core and an electronically conductive coating. The method includes contacting an electroactive material precursor including a plurality of electroactive material particles with a solution so as to form an electronically conductive coating on each of the electroactive material particles. The solution includes a solvent and one or more of copper fluoride (CuF2), titanium tetrafluoride (TiF3 or TiF4), iron fluoride (FeF3), nickel fluoride (NiF2), manganese fluoride (MnF2, MnF3, or MnF4), and vanadium fluoride (VF3, VF4, VF5). The electronically conductive coating includes a plurality of first regions and a plurality of second regions. The plurality of first regions include lithium fluoride. The plurality of second regions include one of copper, titanium, iron, nickel, manganese, and vanadium.
Abstract:
A method of reforming a negative electrode layer of a secondary lithium battery may include execution of a reforming cycle that reforms a major facing surface of the negative electrode layer by eliminating at least a portion of a lithium dendrite or other lithium-containing surface irregularity that has formed on the major facing surface of the negative electrode layer.