Abstract:
A disconnect architecture for use with a system having a battery pack and positive and negative bus rails includes a mid-pack low-power (LP) relay, a fuse, semiconductor switches, and a sequencer circuit. The mid-pack LP relay is positioned between the rails at a mid-stack point of the battery pack, and divides a voltage across the battery pack when commanded open. The fuse is positioned between the mid-pack LP relay and the positive bus rail, and opens in response to a dead short condition of the system. The semiconductor switches are positioned in electrical parallel with the mid-pack LP relay. The sequencer circuit selectively turns on the semiconductor switches and thereby coordinates a flow of electrical current through the semiconductor switches and the mid-pack LP relay in response to a detected partial short condition of the system. A system includes the battery pack, bus rails, and disconnect architecture.
Abstract:
Disclosed are control algorithms and system architectures for managing wireless vehicle charging, including vehicles with rechargeable battery packs, wireless charging capabilities, and control logic for governing such charging. A method is disclosed for managing charging of an electrical storage unit of a motor vehicle at a wireless vehicle charging station. The method includes: receiving a sensor signal indicating detection of an obstruction within a predetermined proximity of the vehicle charging station; determining whether the detected obstruction is living or lifeless; initiating, via a vehicle controller responsive to the detected obstruction being a living object, a first remedial action strategy that commands the vehicle to generate a visual or audible cue to drive away the living object; and, initiating, via the vehicle controller responsive to the detected obstruction being a lifeless object, a second remedial action strategy that commands the motor vehicle to move and thereby avoid contact with the object.
Abstract:
A high-voltage battery assembly includes a high-voltage battery electrically connected to a high-voltage bus including a positive rail and a negative rail, wherein the negative rail includes a controllable contactor switch. A boost charging module includes a DC-DC boost converter, a low-voltage power input line, a boost switch and a boost controller. The DC-DC boost converter is electrically connected to the low-voltage power input line via activation of the boost switch. The DC-DC boost converter connects to the positive rail. A low-voltage electrical connector is electrically connected to the low-voltage power input line of the DC-DC boost converter. The boost controller detects low-voltage power from the low-voltage electrical connector, detects that the controllable contactor switch, closes the boost switch, and controls the DC-DC boost converter to convert the low-voltage power on the low-voltage power input line to high-voltage power to charge the high-voltage battery.
Abstract:
A power inverter including a multi-phase inverter circuit is electrically connected to a high-voltage DC power source, and includes a capacitor electrically connected between positive and negative conductors of a high-voltage bus. A normally-ON discharge switch is electrically connected in series with a discharge resistor between the positive and negative conductors of the high-voltage bus. The discharge switch includes a control gate, wherein the control gate of the discharge switch is in communication with an ignition switch. The discharge switch is controllable to an open state between the positive and negative conductors of the high-voltage bus when the ignition switch is in an ON state. The discharge switch achieves a closed state to provide a low-impedance electric current flow path through the discharge resistor between the positive and negative conductors of the high-voltage bus when the ignition switch is in an OFF state.
Abstract:
An electrical system includes a voltage bus, battery pack, power inverter module (PIM), electric machine, first contactor, and controller. The PIM is connected to the battery pack and has a capacitor, voltage sensor, and semiconductor switches. The electric machine having phase legs with a corresponding phase winding and resistive path. The first contactor connects the PIM to a positive rail of the bus. The controller opens the first contactor in response to a power-off event, commands a discharge of the capacitor through the resistive paths, diagnoses a state of health (SOH) of the first contactor using a first threshold decay rate of the capacitor output voltage upon opening the first contactor, and executes a control action with respect to the electrical system using the diagnosed SOH. The three possible SOH are unhealthy/hard-welded contactor, unhealthy/soft-welded contactor, and healthy/normally-functioning contactor condition. A vehicle and method are also disclosed.
Abstract:
A conductive charging system for use with an offboard AC or DC power supply and a plug-in vehicle includes a conductive armature, an electromagnetic relay, and a switch. The armature is connected directly to the power supply and deploys into electrical contact with the vehicle in response to the vehicle weight. The switch closes in response to the vehicle weight to connect an auxiliary power device to an inductive coil. The relay moves to a first position connecting the charge coupler to an AC-DC converter or the battery pack when the switch is open, and to a second position bypassing the charge coupler when the switch is closed. A vehicle includes the system, charge coupler, HV battery pack, auxiliary power device, and armature.
Abstract:
Methods and systems for balancing battery states of charge in a multi-sectioned battery. In some embodiments, states of health and states of charge of one or more sections of a multi-sectioned battery may be determined. A relationship between the states of charge and states of health of the battery sections may be determined. This information may be used apply a balancing algorithm to redistribute energy between the various battery sections in order to reduce a spread between the states of charge due to the varying states of health.
Abstract:
A battery pack with a drain plug and a circuit to detect when a liquid coolant has entered the battery pack. The drain plug includes a carrier defining a cavity internal to the carrier, an inlet disposed on a first surface of the carrier and an outlet disposed on a second surface of the carrier where the first surface and the second surface fluidly displaced from one another and coupled to the cavity. A soluble plug may be disposed within the cavity of the carrier; the soluble plug is configured to at least partially dissolve when fluidly coupled with a coolant allowing a portion of the coolant to flow between the inlet and the outlet and out of the battery pack. A strain gauge cooperative with the carrier such that a measured resistance change in the strain gauge corresponds to the soluble plug in contact with the liquid coolant. An associated circuit with the drain plug provides notification of the activation of the drain plug to the on-board computer systems.
Abstract:
System and methods for discharging a battery system in a vehicle are presented. In certain embodiments, a battery system included in a vehicle may include a high voltage cell stack and at least one access point configured to selectively couple the high voltage cell stack with a discharging system connector associated with a discharging system. The at least one access point may include a receptacle configured to receive the discharging system connector and selectively couple the discharging system connector across the high voltage cell stack to allow for electrical energy to be discharged from the cell stack to an external discharging system.
Abstract:
A high-voltage relay system for a vehicle. The system includes a high-voltage bus, a parallel relay set and a controller. The parallel relay set includes two or more relays wired in parallel and that are electrically coupled to the high-voltage bus. The controller is programmed to adjust the power flowing through the parallel relay set when a malfunction is detected in one of the relays in the set. The system can include a high-voltage power source electrically coupled to the high voltage bus through the parallel relay set, where the controller reduces the power flowing through the parallel relay by reducing output of the high-voltage power source. The system can include a high-voltage motor electrically coupled to the high voltage bus through the parallel relay set, where the controller reduces the power flowing through the parallel relay set by reducing the motor's power demands.