Abstract:
A cognitive transmission switching array radar system to determine a location of a target and method of performing cognitive transmission switching with an array radar system involve N transmit antenna elements. Aspects include obtaining a crude estimation for the location of the target, and selecting M channels for transmission based on the crude estimation, the M channels corresponding with a subset of the N transmit antenna elements. Processing reflections resulting from the M channels is done to determine the location of the target.
Abstract:
Methods and systems are provided for controlling a radar system of a vehicle. One or more transmitters are configured to transmit radar signals. A plurality of receivers are configured to receive return radar signals after the transmitted radar signals are deflected from an object proximate the vehicle. A processor is coupled to the plurality of receivers, and is configured to generate a plurality of feature vectors based on the returned radar signals and generate a three dimensional representation of the object using the plurality of feature vectors.
Abstract:
A system and a method of coupling radiating elements to a structure are described. The system includes a structure including a fascia, an antenna applique to be disposed conformally behind the fascia, and an adhesion layer between the antenna applique and the fascia.
Abstract:
A single-to-differential converter and a method of fabricating the single-to-differential converter on an integrated circuit are described. The single-to-differential converter provides a pair of differential outputs based on a single-ended input and includes an input node to receive the single-ended input, and a first transistor connected to a power supply pin. A second transistor is connected to the power supply pin. The first transistor and the second transistor are biased under a same amount of direct current (DC) and the pair of differential outputs are generated at respective collectors of the first transistor and the second transistor.
Abstract:
Methods and systems are provided for filtering sound. A position sensor determines positions of a plurality of occupants in a defined space. Multiple microphones receive sound and generate corresponding audio signals. A processor in communication with the microphones and the position sensor receives the positions of the occupants and the audio signals. The processor determines which of the occupants are engaging in speech and applies a temporal-spatial filter to the audio signals to generate a plurality of output signals corresponding respectively to each occupant of the defined space.
Abstract:
A system and method of classifying an object. The system includes a polarizing beam splitter, a first detector, a second detector and a processor. The polarizing beam splitter generates a first source signal having a first polarization direction and a second source signal having a second polarization. The first detector transmits the first source signal at the object and receives a first reflected signal generated at the object in response to the first source signal. The second detector transmits the second source signal at the object and receives a second reflected signal generated at the object in response to the second source signal. The processor is configured to compare the first reflected signal to the second reflected signal to classify the object.
Abstract:
An antenna system operates in a hybrid coplanar waveguide and rectangular waveguide mode. A slot array with a conductive layer is disposed on a substrate and defines a coplanar waveguide joining a number of side slots arranged in a line forming the slot array. Another substrate is spaced apart from the substrate and a ground plane is defined thereon. A defined volume waveguide is disposed between the substrates. The array is configured to radiate a radiation pattern in a hybrid mode that results from a combination of the slot array and the defined volume waveguide. The side slots may be elliptical in shape for side lobe level reduction.
Abstract:
A radar system includes antenna elements and receive channels. An adaptive switch couples the receive channels to a subset of the antenna elements as selected antenna elements. The selected antenna elements receive reflected signals from reflection by objects and each of the receive channels outputs the digital signal based on the reflected signal from the coupled selected antenna element. A controller processes the digital signal from each receive channel to estimate a direction of arrival (DOA) to each object and generate candidate configurations of the switch. Assessing the candidate configurations includes performing a multi-step assessment using a decision tree with each candidate configuration as a root and examining accuracy of an output at a last step in the decision tree to select a selected candidate configuration based on the accuracy. The switch is configured according to the selected candidate configuration prior to receiving the reflected signals for a next iteration.
Abstract:
A system and method of classifying an object. The system includes a polarizing beam splitter, a first detector, a second detector and a processor. The polarizing beam splitter generates a first source signal having a first polarization direction and a second source signal having a second polarization. The first detector transmits the first source signal at the object and receives a first reflected signal generated at the object in response to the first source signal. The second detector transmits the second source signal at the object and receives a second reflected signal generated at the object in response to the second source signal. The processor is configured to compare the first reflected signal to the second reflected signal to classify the object.
Abstract:
A system and method to detect a target with a radar system of a vehicle involve transmitting two or more chirps, in turn, from two or more transmit elements. Each chirp is a continuous wave liner frequency modulated waveform. The method also includes receiving reflections generated by each of the two or more chirps from each of the two or more transmit elements at two or more receive elements, and processing the reflections based on a Doppler sampling frequency corresponding with a period of each of the two or more chirps to determine velocity of each detected target relative to the vehicle.