Abstract:
A method of resistive joining of metal sheets for a battery cell is provided. The method comprises providing an asymmetrical stackup comprising a first set of first metal sheets and a second set of second metal sheets. The first metal sheets arranged in sequence relative the second metal sheets defining the asymmetrical stackup. Each of the first and second metal sheets separated by a coating layer. The first metal sheets include a first material of a first melting point and the second metal sheets include a second material of a second melting point. The coating layer includes a third material of a third melting point. The first melting point is greater than the second melting point. The third melting point is greater than the second melting point and less than the first melting point. The method further comprises heating the first metal sheets to a first temperature to allow solid state bonding of the first metal sheets and to allow solid state bonding of the first set to the second set. The method further comprises heating the second metal sheets to a second temperature to allow fusion bonding of the second metal sheets.
Abstract:
A resistance spot welding method may involve spot welding a workpiece stack-up that includes a steel workpiece and an aluminum alloy workpiece. A pair of opposed welding electrodes are pressed against opposite sides of the workpiece stack-up with one welding electrode contacting the aluminum alloy workpiece and the other welding electrode contacting the steel workpiece. The welding electrodes are constructed so that, when an electrical current is passed between the electrodes and through the workpiece stack-up, the electrical current has a greater current density in the steel workpiece than in the aluminum alloy workpiece to thereby concentrate heat within a smaller zone in the steel workpiece. Concentrating heat within a smaller zone in the steel workpiece is believed to modify the solidification behavior of the resultant molten aluminum alloy weld pool in a desirable way.
Abstract:
A welding electrode for use in resistance spot welding an assembly of overlying metal workpieces that includes an aluminum alloy workpiece is disclosed. The welding electrode includes a body, a convex weld face at one end of the body, and ringed protrusions that project outwardly from the convex weld face. The ringed protrusions are positioned to make contact with, and indent into, a surface of the aluminum alloy workpiece when the convex weld face is pressed against the aluminum alloy workpiece during a spot welding event. When brought into contact with the surface of the aluminum alloy workpiece, the ringed protrusions disrupt the oxide film present on the aluminum alloy workpiece surface, which improves the spot welding process.
Abstract:
A method of forming a rotor includes isolating a bridge area of an electrical steel lamination. The bridge area is disposed between a first portion of the electrical steel lamination and a second portion of the electrical steel lamination that is adjacent to the first portion. Each of the first portion, the second portion, and the bridge area has an initial hardness, and the electrical steel lamination has an initial magnetic permeability. After isolating, the method includes hardening only the bridge area so that the bridge area has a treated hardness that is greater than the initial hardness. Concurrent to hardening, the method includes decreasing the initial magnetic permeability at only the bridge area.
Abstract:
Spot welding electrodes with generally dome shaped welding faces are provided with surface features for welding both aluminum alloy sheet assemblies and steel sheet assemblies. A raised circular plateau is formed on the central axis of the dome and, in one embodiment, a suitable number of round bumps are formed in concentric spacing from adjacent the circumference of the plateau toward the circular edge of the welding face. For welding steel workpieces the plateau mainly serves as the engaging feature of the electrode. Both the plateau and concentric bumps are used in penetrating light metal surfaces for suitable current passage. In another embodiment, the domed surface is shaped with concentric terraces for engagement with the workpieces.
Abstract:
A method of joining an aluminum workpiece and an adjacent overlapping steel workpiece by reaction metallurgical joining, and the resultant metallurgical joint formed between the two workpieces, are disclosed. The method involves compressing a reaction material located between the aluminum and steel workpieces and heating the reaction material momentarily to form a metallurgical joint that comprises bonding interface between the reaction material and the steel workpiece and a bonding interface between the reaction material and the aluminum workpiece. The reaction material is formulated to be able to interact with both aluminum and steel in order to establish the bonding interfaces of the metallurgical joint. Moreover, the practice of oscillating wire arc welding may be employed to deposit the reaction material in the form of a reaction material deposit onto the steel workpiece prior to assembling the steel and aluminum workpieces in a workpiece stack-up.
Abstract:
A cutting tool that can simultaneously cut and restore asymmetric weld face geometries of two welding electrodes that are subject to different degradation mechanisms is disclosed along with a method of using such a cutting tool during resistance spot welding of workpiece stack-ups that include dissimilar metal workpieces. The cutting tool includes a first cutting socket and a second cutting socket. The first cutting socket is defined by one or more first shearing surfaces and the second cutting is defined by one or more second shearing surfaces. The first shearing surface(s) and the second shearing surface(s) are profiled to cut and restore a first weld face geometry and a second weld face geometry, respectively, that are different from each other upon receipt of electrode weld faces within the cutting sockets and rotation of the cutting tool.
Abstract:
A method of joining a first metal workpiece substrate and a second metal workpiece substrate by way of reaction metallurgical joining involves passing a pulsating DC electrical current through the metal workpiece substrates and a reaction material disposed between confronting faying surfaces of the workpiece substrates. The electrical current comprises a plurality of current pulses that generally increase in applied current level.
Abstract:
A method of spot welding a workpiece stack-up that includes a steel workpiece and an aluminum alloy workpiece involves passing an electrical current through the workpieces and between welding electrodes that are constructed to affect the current density of the electrical current. The welding electrodes, more specifically, are constructed to render the density of the electrical current greater in the steel workpiece than in the aluminum alloy workpiece. This difference in current densities can be accomplished by passing, at least initially, the electrical current between a weld face of the welding electrode in contact with the steel workpiece and a perimeter region of a weld face of the welding electrode in contact with the aluminum alloy workpiece.
Abstract:
A computer software product adapted for use in a weld inspection system is executed by a processor and is stored in an electronic storage medium of the weld inspection system adapted to facilitate the inspection of a weld of a work product. The computer software product includes a first module and a combination module. The first module is configured to transform first and second raw thermal images, associated with respective first and second heat pulses of at least a portion of the work product having the weld, into respective first and second binary images. The combination module is configured to transform the first and second binary images into a combined binary image for the reduction of noise.