摘要:
The rankine cycle system includes an evaporator coupled to a heat source and configured to circulate a working fluid in heat exchange relationship with a hot fluid from the heat source so as to heat the working fluid and vaporize the working fluid. An expander is coupled to the evaporator and configured to expand the vaporized working fluid from the evaporator. The exemplary expander is operable at variable speed. A condenser is coupled to the expander and configured to condense the vaporized working fluid from the expander. A pump is coupled to the condenser and configured to feed the condensed working fluid from the condenser to the evaporator.
摘要:
A closed loop expansion system for energy recovery includes a heat exchanger for using heat from a heat source to heat a working fluid of the closed loop expansion system to a temperature below the vaporization point of the working fluid; a radial inflow expander for receiving the working fluid from the heat exchanger and for expanding and partially vaporizing the working fluid; a screw expander for receiving the working fluid from the radial inflow turbine and for further expanding and vaporizing the working fluid; and a condenser for receiving the working fluid from the screw expander and for liquefying the working fluid.
摘要:
A system and method improves cold start performance of an organic Rankine cycle (ORC) plant. The system includes one or more pumps configured to pump condensed fluid from points of natural accumulation of the condensed fluid within an ORC loop back into a corresponding low pressure liquid storage vessel shortly after shutting down the ORC plant to ensure the start-up routine works properly for the next ORC plant start event. One or more of the pumps can also be configured to pump fluid away from the ORC expansion machine(s) at any time prior to starting the ORC if the fluid is in a liquid phase.
摘要:
A waste heat recovery plant control system includes a programmable controller configured to generate expander speed control signals, expander inlet guide vane pitch control signals, fan speed control signals, pump speed control signals, and valve position control signals in response to an algorithmic optimization software to substantially maximize power output or efficiency of a waste heat recovery plant based on organic Rankine cycles, during mismatching temperature levels of external heat source(s), during changing heat loads coming from the heat sources, and during changing ambient conditions and working fluid properties. The waste heat recovery plant control system substantially maximizes power output or efficiency of the waste heat recovery plant during changing/mismatching heat loads coming from the external heat source(s) such as the changing amount of heat coming along with engine jacket water and its corresponding exhaust in response to changing engine power.
摘要:
A system and method are provided for using the thermal mass of an ORC, the working fluid, the oil loop, the cooling fluid loop and all components, to provide additional transient power to an electrical grid. A pre-heater transfers heat from the cooling fluid to a low temperature (LT) ORC loop working fluid. A LT ORC loop expander generates transient power to support stabilization of the electrical grid. A heat exchanger transfers heat from the thermal oil to a high temperature (HT) ORC loop working fluid. A HT ORC loop expander generates transient power to support stabilization of the electrical grid.
摘要:
A system and method for waste heat recovery in exhaust gas recirculation is disclosed. The system includes an engine having an intake manifold and an exhaust manifold, an exhaust conduit connected to the exhaust manifold, and a turbocharger having a turbine and a compressor, the turbine being connected to the exhaust conduit to receive a portion of the exhaust gas from the exhaust manifold. The system also includes an EGR system connected to the exhaust conduit to receive a portion of the exhaust gas, with the EGR system including an EGR conduit that is connected to the exhaust conduit to receive a portion of the exhaust gas, a heat exchanger connected to the EGR conduit and being configured to extract heat from the exhaust gas, and a waste heat recovery system connected to the heat exchanger and configured to capture the heat extracted by the heat exchanger.
摘要:
A waste heat recovery plant control system includes a programmable controller configured to generate expander speed control signals, expander inlet guide vane pitch control signals, fan speed control signals, pump speed control signals, and valve position control signals in response to an algorithmic optimization software to substantially maximize power output or efficiency of a waste heat recovery plant based on organic Rankine cycles, during mismatching temperature levels of external heat source(s), during changing heat loads coming from the heat sources, and during changing ambient conditions and working fluid properties. The waste heat recovery plant control system substantially maximizes power output or efficiency of the waste heat recovery plant during changing/mismatching heat loads coming from the external heat source(s) such as the changing amount of heat coming along with engine jacket water and its corresponding exhaust in response to changing engine power.
摘要:
A system includes a compression system fluidly coupled to a compartment to compress a first quantity of gas for storage in the compartment, the compression system including a compression path to convey the first quantity of gas; an expansion system fluidly coupled to the compartment to expand a second quantity of gas from the compartment, the expansion system including an expansion path to convey the second quantity of gas; a first path fluidly coupled to the compression path to convey the first quantity of gas to the compartment; a second path fluidly coupled to the expansion path to convey the second quantity of gas from the compartment to the expansion system; and a separation unit fluidly coupled to one of the first path, second path, compression path, and expansion path, wherein the separation unit removes a quantity of carbon dioxide from one of the first and second quantities of gas.
摘要:
A system and method for compressing and expanding air in a compressed air energy storage (CAES) system is disclosed. A CAES system is provided that is alternately operable in a compression mode and an expansion mode and includes therein a motor-generator unit and a drive shaft connected to the motor-generator unit that is configured to transmit rotational power to and from the motor-generator unit. The CAES system also includes at least one reversible compressor-expander unit coupled to the drive shaft and configured to selectively compress and expand air, and an air storage unit connected to the reversible compressor-expander unit and configured to store compressed air received therefrom, with the at least one reversible compressor-expander unit compressing air during the compression mode and expanding air during the expansion mode.
摘要:
The present application and the resultant patent provide a waste heat recovery system for recovering heat from a number of turbocharger stages. The waste heat recovery system may include a simple organic rankine cycle system and a number of charge air coolers in communication with the turbocharger stages and the simple organic rankine cycle system. The charge air coolers are positioned in a number of parallel branches of the simple organic rankine cycle system.