Abstract:
This invention provides an apparatus and method for efficient detection of ions in a time-of-flight mass spectrometer. The apparatus of the invention provides for orthogonal deflection of ions in the flight tube of a time of flight mass spectrometer to a detector or detectors positioned along or in the wall of the flight tube of the mass spectrometer. A method of detecting ions utilizing the apparatus is also provided.
Abstract:
The invention provides an ion extraction pulser. The ion extraction pulser may be used independently or in conjunction with a mass spectrometry system. The mass spectrometry system includes an ion source for producing ions, an ion optics system downstream from the ion source for selecting and directing ions, and a detector down stream from the ion optics system for detecting the ions selected and directed by the ion optics system. The ion optics system includes one or more ion extraction pulsers. The ion extraction pulser includes a mesh plate for applying a pulse for extracting ions from an ion beam; a first filter plate adjacent to the mesh plate for filtering ions extracted by the mesh plate; a guard plate adjacent to the first filter plate for further directing ions filtered by the first filter plate; and a second filter plate adjacent to the first guard plate for further filtering ions directed from the guard plateThe invention also provides methods for extracting, selecting and processing ions using ion extraction pulsers.
Abstract:
The invention described herein provides a mass spectrometry system, having an ion source including an ionization device for producing ions, a collection conduit adjacent to the ionization device for collecting ions produced by the ionization device, a first gas source for supplying gas to desolvate ions produced by the ionization device, a second gas source for supplying gas at a defined flow to the ionization region, and a detector downstream from the ion source for detecting ions produced by the ion source. The invention also provides an ion source including an ionization device for producing ions, a collection conduit adjacent to the ionization device for collecting ions produced by the ionization device, a first gas source for supplying gas to desolvate ions produced by the ionization device, and a second gas source for supplying gas at a defined flow to the ionization region. A method for producing analyte ions is also disclosed. The method includes producing analyte ions from an ionization device, directing a first heated gas toward the analyte ions to desolvate the analyte ions, and directing a second gas toward the analyte ions at a defined and continual flow rate.
Abstract:
An apparatus and method for correcting deviations in a quadrupole field in a quadrupole ion trap is provided. More specifically the invention provides for correction electrodes positioned in at least one primary quadrupole electrode and a method of using the correction electrodes to provide a field correction potential.
Abstract:
Ion guides and systems and methods for involving the use of ion guides are disclosed. Briefly described, one exemplary system, among others, includes an ion guide. The ion guide includes a first structure and a second structure. The second structure is coaxially disposed within the first structure. The second structure includes at least three groups of opening the through a wall of the second structure that are distributed around a circumference of the second structure. In addition, at least one of the group of openings is offset from the other groups of openings by a multiple of a constant rotation angle around the circumference of the second structure.
Abstract:
A method and apparatus for generating electrical fields within the ion flight path of a mass spectrometer are provided. Gratings having a planar array of parallel conductive strands and electrically connected to a voltage source are placed in the ion flight path so that at least a portion of the conductive strands traverses the flight path. The gratings may be arranged within the ion flight path so that the conductive strands of each of the gratings are aligned behind the conductive strands of a first grating, with respect to the ion flight path, thus providing high ion transmission.
Abstract:
The invention provides mass spectrometer systems, including time-of-flight mass spectrometers, and methods of performing mass spectroscopy. The systems are capable of operating in tandem or conventional mode. The systems include an ion reflector that, when operating in tandem mode, provides a discontinuous voltage to control the collision energy of the parent ions with the dissociation element. By controlling the collision energy, particular compositional information from the sample may be examined, such as specific bonding energies.
Abstract:
A technique that modulates the power of a inductively coupled plasma (ICP) according to the operative modes of a spectrometer. An analytical apparatus of the present invention contains an inductively coupled plasma generator (ICPG) and a spectrometer. The ICPG generates a plasma for forming ionic and excited molecular species from a sample. The spectrometer analyzes the ionic and excited molecular species formed. The spectrometer operates in an analysis mode wherein the ionic and excited molecular species are identified according to physical characteristics of the species to provide data on the species and further has a washout mode wherein the spectrometer flushes out interfering ions and molecules and provides no significant data on the sample. The controller modulates the ICPG to operate in power cycles, at each cycle the ICPG operates in an analysis period and a stand-by period. By modulating the plasma power, the power consumption and heat dissipation can be reduced. When such a power modulated plasma source is coupled to, for example, a time-of-flight mass spectrometer (TOFMS), high analytical performance can be achieved with simultaneous multi-element detection capability.
Abstract:
A mass spectrometer system an ion source configured to produce ions and a non-metallic capillary configured to receive at least a portion of the ions from the ion source. The capillary includes an elongated body and multiple bores traversing the elongated body in a longitudinal direction. The bores transport the received ions through the capillary toward a mass analyzer of the mass spectrometer system for detection.
Abstract:
An ion source a first ionizer comprising: an electrospray needle comprising a tip; and a conduit disposed annularly about the needle and configured to pass an inert gas in proximity of the tip to nebulize a fluid emerging from the tip, the nebulized fluid comprising analytes and a mobile phase. The ion source comprises a capillary in tandem with the first ionizer and configured to receive the droplets; a heater configured to heat the capillary to a temperature at which mobile phase vaporizes; and a second ionizer in tandem with the capillary and configured to receive the vaporized mobile phase and the analytes. A method is also described.