Abstract:
An automated system and method for diagnosing and monitoring the outcomes of atrial fibrillation is described. A plurality of monitoring sets is retrieved from a database. Each of the monitoring sets include recorded measures relating to patient information recorded on a substantially continuous basis. A patient status change is determined in response to an atrial fibrillation diagnosis by comparing at least one recorded measure from each of the monitoring sets to at least one other recorded measure. Both recorded measures relate to the same type of patient information. Each patient status change is tested against an indicator threshold corresponding to the same type of patient information as the recorded measures which were compared. The indicator threshold corresponds to a quantifiable physiological measure of a pathophysiology resulting from atrial fibrillation.
Abstract:
An electrotherapy device including at least one sensor operable to sense at least one physiological parameter of a patient. A controller is operably connected to the at least one sensor operable to receive signals from the at least one sensor corresponding to the at least one physiological parameter. Memory is operable to store computer-programming code executed by the controller. The programming code includes decision-making criteria operable to adapt a patient treatment in response changes to the detected at least one physiological parameter. At least one pair of electrodes is operably connected to the controller and operable to administer the treatment to the patient.
Abstract:
A system and method for providing patient status feedback via an automated patient care system with speech-based wellness monitoring are described. Device measures are collected through an implantable medical device on a substantially continuous basis from an implant recipient. The device measures are received as physiological measures for storage into a patient care record. The physiological measures include at least one of collected or derived physiological measures. Patient wellness indicators are obtained through voice feedback provided by the implant recipient substantially contemporaneous to the collection of at least one set of the device measures. The voice feedback is processed against a stored speech vocabulary into normalized quality of life measures for storage into the patient care record. The physiological measures and the quality of life measures stored in the patient care record are analyzed relative to at least one of other physiological measures and other quality of life measures to generate patient status feedback.
Abstract:
An anticonstipation apparatus, and method, that may include using an implanted stimulus generator that may supply electrical stimuli to the muscles associated with a target portion of the patient's gut, from the esophagus to the anus, through an electrical lead and several pairs of electrodes. The electrical stimuli may be provided to nerves in the autonomic nervous system that are associated with the muscles, or the stimuli may be provided directly to the muscles themselves. The stimuli may be provided sequentially, in a proximal to caudad direction, in order to initiate, enhance or artificially produce peristalsis in the gut's target portion in a proximal to caudad direction. If the gut's target portion is in the descending colon, such stimulation may be coordinated with similar stimulation of the muscles associated with the rectum and anus. A sensor may be provided to detect when the target portion is experiencing constipation.
Abstract:
A stimulator for providing stimulus pulses to the SA nodal fat pad, in response to heart rate exceeding a predetermined level, in order to reduce the ventricular rate. The device is also provided with a cardiac pacemaker to pace the ventricle in the event that the stimulus pulses reduce the heart rate below a predetermined value. The device is also provided with a feedback regulation mechanism for controlling the parameters of the stimulation pulses applied to the AV nodal fat pad, as a result of their determined effect on heart rate.
Abstract:
An implantable cardioverter/defibrillator provided with method and apparatus for discrimination between ventricular tachycardia and ventricular fibrillation. The device is provided with two pairs of electrodes, each pair of electrodes coupled to processing circuitry for identifying a predetermined fiducal point in the electrical signal associated with a ventricular depolarization. The cumulative beat to beat variability of the intervals separating the two identified fiducal points, over a series of detected depolarizations is analyzed. The result of this analysis is used to distinguish between ventricular tachycardia and ventricular fibrillation.
Abstract:
Adaptive methods for initiating charging of the high power capacitors of an implantable medical device for therapy delivery after the patient experiences a non-sustained arrhythmia, and devices that perform such methods. The adaptive methods and devices adjust persistence criteria used to analyze an arrhythmia prior to initiating a charging sequence to deliver therapy. Some embodiments apply a specific sequence of X-out-of-Y criteria, persistence criteria, and last event criteria before starting charging for therapy delivery.
Abstract:
A subcutaneous implantation instrument with a scissored dissecting tool assembly is provided. An incising shaft longitudinally defines a substantially non-circular bore continuously formed to communicatively receive an implantable object and further includes a beveled cutting blade formed on a distal end. A dissecting tool assembly is included. A longitudinally split needle tip forms a pair of blades with cutting edges progressively defined outwardly from the needle tip. A pair of handles are each distally attached to one of the blades and pivotably coupled and disposed for transverse operation, wherein the dissecting tool assembly is removably affixable to the distal end of the incising shaft. A delivery mechanism longitudinally defines a substantially non-circular bore continuously formed to deploy the implantable object into the incising shaft.
Abstract:
A system for diagnosing and monitoring congestive heart failure for automated remote patient care is presented. A database stores a plurality of monitoring sets relating to patient information recorded on a substantially continuous basis. A server retrieving and processing the monitoring sets includes a comparison module determining patient status changes by comparing at least one recorded measure from one of the monitoring sets to at least one other recorded measure from another of the monitoring sets with both recorded measures relating to a type of patient information, and an analysis module testing each patient status change for one of an absence, an onset, a progression, a regression, and a status quo of congestive heart failure against a predetermined indicator threshold corresponding to a type of patient information as the recorded measures. The indicator threshold corresponds to a quantifiable physiological measure of a pathophysiology indicative of congestive heart failure. Hysteresis parameters may be used as a temporally-defined threshold for changes in pathophysiology.
Abstract:
A system and method for generating baseline data for automated management of cardiovascular pressure is disclosed. Collected device measures are accumulated to record raw physiometry for a patient, wherein the patient is regularly monitored by an implantable medical device, beginning with an initial observation period. Derived device measures are generated to provide derivative physiometry determined at least in part from the collected device measures. A patient status indicator is determined by analyzing the collected and derived device measures to diagnose a pathophysiology indicative of an absence, onset, progression, regression, and status quo in cardiovascular pressure, wherein the collected and derived device measures and the patient status indicator originating from the initial observation period include baseline data.