Abstract:
A dynamic calibrating current sensor control system includes an input power supply that generates an input current and a current sensor interposed between the input power supply and the load. The current sensor is configured to output at least one current signal indicating a level of current delivered to the load. The dynamic calibrating current sensor control system also comprises an electronic switching control circuit that generates at least one control signal to selectively connect the input power supply to the load, and an electronic drift suppression circuit in signal communication with the current sensor and the switching control circuit. The drift suppression circuit is configured to generate a corrected current signal in response to applying an offset value to the current signal. The offset value cancels the drift current from the current signal in response to connecting the input power supply to the load.
Abstract:
A position sensor arrangement has a transformer based position sensor and a cable peaking correction apparatus. The cable peaking correction apparatus is controllably coupled to a transformer based position sensor excitation input or the outputs from the transformer based position sensor. A signal processing system is connected to multiple outputs from the transformer based position sensor arrangement.
Abstract:
An interface circuit for a bridge sensor has a switch that connects to a resistive bridge circuit. The resistive bridge circuit includes a first input terminal, a second input terminal, and a pair of resistive branches that connect between the first and second input terminals. Both of the resistive branches include an output terminal. The switch is connected to the first input terminal and is in series with both resistive branches for connecting and disconnecting a voltage source from the resistive branch output terminals.
Abstract:
A sensor system includes a first sensor and a second sensor and a multiplexor having at least two multiplexer inputs connected to the sensors. The output of the multiplexor is connected to a time correlation logic circuit via at least a signal conditioning and anti-aliasing filter, and the output of the time correlation logic is a time correlated sensor reading of the first and second sensor.
Abstract:
An electronic circuit for processing signals from a strain gauge pressure sensor includes an anti-alias filter, an analog-to-digital conversion circuit, and a detection circuit for detecting when the sensor is unexpectedly disconnected from the signal processing circuit. The detection circuit provides a yes/no indication of the connection of the pressure sensor to the circuit based upon whether a common mode voltage associated with one of the signal terminals of the pressure sensor is out of range.
Abstract:
A lightning protection circuit includes a first lightning protection branch including at least one transient voltage suppression (TVS) protection element, and a testing element integral to the lightning protection circuit. The testing element is operable to test a functionality of the lightning protection circuit while he lightning protection circuit is installed in an electronic control system. A controller is connected to the testing element, such that the controller receives sensed signals from the testing element.
Abstract:
A speed detection device includes a comparator module, a sensor lead with a node connected to the comparator module, and a limit set module. The limit set module is connected to the sensor lead node and to the comparator by an upper limit lead and a lower limit lead to provide upper and lower limits to the comparator that vary according to amplitude variation in voltage applied to the sensor lead.
Abstract:
Systems, methods, and computer program products for sinusoidal nulling are provided. Aspects include transmitting, by a controller, an excitation signal to a first sensor, determining, by the controller, a target harmonic based at least on one or more characteristics of the excitation signal, receiving a return signal from the first sensor, sampling the return signal at a first sample rate based on the target harmonic, and adjusting a phase of the sampled return signal to null the target harmonic amplitude to form an adjusted return signal.
Abstract:
A resolver system includes a rotatable primary winding, a secondary winding fixed relative to the primary winding, and an analog-to-digital converter electrically connected to the secondary winding. A control module is operatively connected to analog-to-digital converter and is responsive to instructions to apply an excitation voltage with an oscillating waveform to the primary winding, induce a secondary voltage using the secondary winding using the excitation voltage, and acquire a plurality of voltage measurements from the secondary winding separated by a time interval corresponding to π/3 of the excitation voltage oscillating waveform.
Abstract:
A system comprises a first current balancer and a second current balancer. Each of the first and second current balancers includes a first input line for a first voltage source connected to a first output, a second input line for a second voltage source connected to a second output and is in parallel with the first input line, a first series pass element connected in series with the first input line, and a second series pass element connected in series with the second input line. The system further includes a controller operatively connected to the first series pass element and to the second series pass element to throttle at least one of the first series pass element and the second series pass element to balance output current in the first and second outputs.