Abstract:
A system comprises a first 3-phase rectifier having a positive DC lead and a negative DC lead and a second 3-phase rectifier having a positive DC lead and a negative DC lead. The system also includes a 4-phase, 3-level inverter connected to the first and second 3-phase rectifiers. A method comprises receiving variable frequency, 3-phase power from a first generator, receiving variable frequency, 3-phase power from a second generator, rectifying the variable frequency, 3-phase power from each of the first and second generators into DC power. And inverting the DC power into 4-phase, constant frequency power for powering a load.
Abstract:
A motor control system can include a resolver configured to output resolver signals and a plurality of motor drives, each motor drive configured to drive a segment of a segmented motor. A resolver signal splitter can be connected between the resolver and the plurality of motor drives to split the resolver signals from the resolver to provide each motor drive with the resolver signals.
Abstract:
Provided are embodiments of a system for split power-control electronics with fiber-optic multiplexing. The system includes one or more power electronics modules configured to provide power to a load, and a control card configured to control the one or more power electronics modules. The system also includes a control module configured to receive and process the control card, and one or more connections, the one or more connections configured to connect a control module to the one or more power electronics modules. Also provided are embodiments of a method for operating power electronics modules in a redundant mode.
Abstract:
An electric propulsion system includes a prime mover, an starter-motor generator configured to be driven by the prime mover to generate electric power, and an electric propulsion motor, and an integrated generator-motor controller arranged to control the supply of the electric power to the electric propulsion motor in response to a control signal, wherein the integrated generator-motor controller includes an active rectifier configured in a first mode to feed-forward to the starter-motor generator a power demand parameter associated with the control signal so as to control the power output of the starter-motor generator in order to start the prime mover.
Abstract:
An inductor housing for housing an inductor having a core and a winding includes an outer annular wall and a third wall extending inward from the outer annular wall such that the outer annular wall and the third wall at least partially define an annular cavity configured to receive the inductor. The inductor housing further includes an attachment feature configured to couple the inductor housing to a secondary housing. The inductor is configured to be enclosed within the annular cavity and the secondary housing, and coolant from a coolant supply is configured to flow past the annular cavity and contact the winding of the inductor.
Abstract:
A transient voltage protection circuit. The transient voltage protection circuit including a resistor with a source-side terminal and a device-side terminal, a first stage with a first protection element connected to the resistor device-side terminal, a second stage with a second protection element connected to the resistor source-side terminal, and a ground terminal connected to the resistor source-side terminal through the second stage and to the resistor device-side terminal of the resistor through the first stage.
Abstract:
A transformer assembly includes a housing with a sealed housing interior, a transformer disposed within the housing interior and having a core with windings wrapped about the core, and a condenser mounted to the housing. The condenser is in fluid communication with the housing interior. A surface of the windings bounds a coolant channel extending between the windings and the condenser to convey coolant of a first phase to the condenser and receive coolant of a second phase from the condenser.
Abstract:
A method of converting power includes receiving alternating current (AC) at the first phase leg set of a power conversion system having first and second phase legs sets connected by direct current (DC) leads. The first phase leg set rectifies the received AC power into DC power by switching outer switches of the first phase leg set into an off state. The DC lead conveys the DC power from the first phase leg set to the second phase leg set. The second phase leg set inverts the DC power into AC power.
Abstract:
A power converter includes a first set of transistors electrically connected in series, a second set of transistors electrically connected in series, and an AC link. The second set of transistors is electrically connected in parallel with the first set of transistors to form an H-bridge. The AC link is electrically connected between the first and second sets of transistors. A plurality of H-bridges are connected in parallel and a three-wire DC bus is electrically connected to the H-bridges.
Abstract:
A three phase step-up autotransformer construction is discussed herein. The passive 12-pulse AC-DC converter offers simplicity, high reliability and low cost solution to AC-DC power conversion. The autotransformer is a component of the passive 12-pulse AC-DC converter. The autotransformer converts three-phase AC power into six-phase AC power. With appropriate vector design, the autotransformer may be configured to draw a near sinusoidal 12-pulse current waveform from the three-phase voltage source. The six-phase output may be configured to drive a rectifier (non-linear) load.