Abstract:
A carbon dioxide conversion system for an environment includes a first gas-liquid contactor-separator downstream of the environment; an electrochemical conversion cell downstream of the first gas-liquid contactor-separator; and a cleaned ionic liquid storage intermediate the first gas-liquid contactor-separator and the electrochemical conversion cell.
Abstract:
An environmental control system includes an air conditioning subsystem; a mix manifold downstream of the air conditioning subsystem and upstream of an environment to be conditioned; and a contaminant removal subsystem downstream of the environment to be conditioned. The contaminant removal subsystem includes a first gas-liquid contactor-separator. The first gas-liquid contactor-separator includes a first rotating porous bed that provides a heat/mass transfer surface for contact between a contaminated air from the environment and a liquid absorbent.
Abstract:
An environmental control system includes a carbon dioxide source; a compressor downstream of the carbon dioxide source; a Sabatier reactor downstream of the compressor, wherein the Sabatier reactor reacts carbon dioxide with hydrogen to produce methane and water; a water separator downstream of the Sabatier reactor, wherein the water separator separates hydrocarbons from water, wherein the hydrocarbons include methane; a pyrolysis assembly downstream of the water separator and upstream of the compressor, wherein the pyrolysis assembly pyrolyzes methane to produce carbon and hydrogen, wherein the pyrolysis assembly includes a pre-form that adheres carbon; and an oxygen generating assembly (OGA) downstream of the water separator and upstream of the compressor, wherein the OGA converts water to hydrogen and oxygen.
Abstract:
A pyrolysis reactor includes a chamber having an inactive section and an active section. The inactive section is configured to hold an inactive pre-form capable of adhering carbon. The active section is configured to hold an active pre-form capable of adhering carbon. An induction coil is outside of and operatively adjacent the active section, and wherein the active section is configured to pyrolyze a hydrocarbon.
Abstract:
An environmental control system includes a carbon dioxide source; a compressor downstream of the carbon dioxide source; a Sabatier reactor downstream of the compressor, wherein the Sabatier reactor reacts carbon dioxide with hydrogen to produce methane and water; a water separator downstream of the Sabatier reactor, wherein the water separator separates hydrocarbons from water, wherein the hydrocarbons include methane; a pyrolysis assembly downstream of the water separator and upstream of the compressor, wherein the pyrolysis assembly pyrolyzes methane to produce carbon and hydrogen, wherein the pyrolysis assembly includes a pre-form that adheres carbon; and an oxygen generating assembly (OGA) downstream of the water separator and upstream of the compressor, wherein the OGA converts water to hydrogen and oxygen.
Abstract:
An environmental control system includes an air conditioning subsystem and a contaminant removal subsystem downstream of the environment to be conditioned. The contaminant removal subsystem includes: a first gas-liquid contactor-separator; a second gas-liquid contactor-separator; and a dehumidifier disposed either upstream of the first gas-liquid contactor-separator or downstream of the second gas-liquid contactor-separator.
Abstract:
An environmental control system includes an air conditioning subsystem; a mix manifold downstream of the air conditioning subsystem and upstream of an environment to be conditioned; and a contaminant removal subsystem downstream of the environment to be conditioned. The contaminant removal subsystem includes a first gas-liquid contactor-separator. The first gas-liquid contactor-separator includes a first rotating porous bed that provides a heat/mass transfer surface for contact between a contaminated air from the environment and a liquid absorbent.
Abstract:
An Environmental Control System includes a sensor, an air purification subsystem, and a controller in communication with the sensor and air purification subsystem. The sensor detects a contaminant in the air and generates a contaminant signal. The controller compares the contaminant signal to a predicted sensory response threshold. When the contaminant signal reaches the predicted sensory response threshold, the controller commands the air purification subsystem to alter a condition in the air.
Abstract:
An Environmental Control System includes a sensor, an air purification subsystem, and a controller in communication with the sensor and air purification subsystem. The sensor detects a contaminant in the air and generates a contaminant signal. The controller compares the contaminant signal to a predicted sensory response threshold. When the contaminant signal reaches the predicted sensory response threshold, the controller commands the air purification subsystem to alter a condition in the air.
Abstract:
An Environmental Control System includes a sensor, an air purification subsystem, and a controller in communication with the sensor and air purification subsystem. The sensor detects a contaminant in the air and generates a contaminant signal. The controller compares the contaminant signal to a predicted sensory response threshold. When the contaminant signal reaches the predicted sensory response threshold, the controller commands the air purification subsystem to alter a condition in the air.