Abstract:
Embodiments provide a spatial flow determining method, a base station, and user equipment. The method includes sending, by a base station, a feedback mode indication to user equipment, where the feedback mode indication is used to instruct the user equipment to feed back, based on a packet granularity, channel state report (CSR) information, and each packet granularity includes at least one spatial flow. The method also includes receiving, by the base station, CSR information of each packet granularity that is sent by the user equipment; and determining, by the base station according to the CSR information of each packet granularity, a spatial flow used to transmit data to the user equipment.
Abstract:
Embodiments of the present invention provide a channel state information obtaining method and a device, where the method includes: determining, by a base station according to radio resource usage, a special timeslot in a frequency range used for downlink data transmission; sending special-timeslot configuration information to user equipment, where the special-timeslot configuration information is used to configure the user equipment to send the uplink physical signal over a downlink frequency band in the special timeslot; and performing channel estimation according to the uplink physical signal after receiving the uplink physical signal sent by the user equipment, to obtain channel state information. Compared with a technical solution in the prior art in which user equipment obtains channel state information and then feeds back the channel state information to a base station, system overheads caused in obtaining, by the base station, the channel state information are reduced.
Abstract:
A method and an apparatus for transmitting control information are disclosed. The method includes: grouping UEs in a cell, and obtaining second control information of each UE group after grouping; performing joint channel coding on the second control information of each UE group; obtaining first control information, and transmitting the first control information to the UEs in the cell, where the first control information includes indication information of the second control information, on which joint channel coding has been performed, of each UE group, so as to obtain the second control information according to the indication information; and transmitting the second control information, on which joint channel coding has been performed, of each UE group to the UEs in the cell.
Abstract:
Embodiments of the present invention provide a method and an apparatus for reciprocity calibration between base stations, which relate to the communications field, and can improve precision of reciprocity calibration between base stations. The method includes: obtaining, by each base station by means of calculation, a precoding vector corresponding to a selected subcarrier of the base station; sending, by all the base stations to UE by using the selected subcarriers of the base stations, downlink user-dedicated reference signals that are mutually orthogonal between cells corresponding to the base stations; obtaining, by each base station, an inter-base station calibration compensation coefficient of the selected subcarrier of the base station; and adjusting, by each base station, a self-calibration matrix of the selected subcarrier according to the inter-base station calibration compensation coefficient of the selected subcarrier of the base station.
Abstract:
A method and an apparatus for scheduling terminals in a system with multiple antenna elements combining into a common cell are provided. The method includes: receiving channel quality information fed back by the multiple terminals in the common cell, determining, according to the channel quality information fed back by the multiple terminals, all terminals capable of being bound to each antenna element; determining a first antenna element among the antenna elements in the common cell on a first time domain resource within a scheduling granularity, determining a terminal to be served on the first time domain resource, and beginning to serve the terminal; and scheduling all terminals capable of being bound to the first antenna element on each remaining time domain resource within the scheduling granularity, determining a terminal to be served on each remaining time domain resource, and beginning to serve the terminal.
Abstract:
Embodiments of the present invention provide a channel state information obtaining method and a device, where the method includes: determining, by a base station according to radio resource usage, a special timeslot in a frequency range used for downlink data transmission; sending special-timeslot configuration information to user equipment, where the special-timeslot configuration information is used to configure the user equipment to send the uplink physical signal over a downlink frequency band in the special timeslot; and performing channel estimation according to the uplink physical signal after receiving the uplink physical signal sent by the user equipment, to obtain channel state information. Compared with a technical solution in the prior art in which user equipment obtains channel state information and then feeds back the channel state information to a base station, system overheads caused in obtaining, by the base station, the channel state information are reduced.
Abstract:
Embodiments of the present disclosure relate to the communications field, and provide a signal transmission method and apparatus, which can effectively resolve a resource waste problem of user data resource elements and improve system power utilization. The method includes: determining, by a base station, a first parameter value of a user data resource element (RE), an initial parameter value of a demodulation reference signal resource element (DMRS RE), and a compensation parameter value of the DMRS RE; determining, by the base station according to the initial parameter value and the compensation parameter value, a second parameter value required for transmitting a DMRS; and transmitting, by the base station, the DMRS, the user data, and the compensation parameter value to user equipment, so that the user equipment demodulates the user data.
Abstract:
Embodiments of the present application disclose data frame implementation methods and apparatus. In one embodiment, a method includes: configuring a data frame used for radio signal transmission, where the data frame includes at least two subframes, each subframe has a fixed length, the at least two subframes may be mapped to at least two frequency bands with different subcarrier spacings, and a quantity of symbols included in each subframe is corresponding to a subcarrier spacing of a frequency band to which the subframe is mapped. According to embodiments of the present application, various service requirements of 5G mobile communication can be met and a service level of the 5G mobile communication can be improved.
Abstract:
A radio access node (RAN) and method of operation of the RAN are provided. The RAN includes a massive multiple-input-multiple-output (MIMO) antenna array. The RAN includes a processing hardware configured to carry out a communication method that includes receiving a digital data stream for transmission on a time-frequency resource. The RAN precodes the digital data stream using a digital beamforming stage to render a precoded digital downlink data stream for downlink data stream signal transmission to a user equipment. The digital beamforming stage includes a first precoding stage configured according to a long-term matrix, and a second precoding stage configured according to a short-term matrix. The RAN is further configured to generate a downlink data stream transmission signal to the user equipment in accordance with the precoded digital downlink data stream.
Abstract:
An uplink data transmission method and apparatus are described. The uplink data transmission method includes receiving a first message including transmission mode information. The transmission mode information indicates that a terminal device is capable of transmitting uplink data by using at least two contention transmission units (CTUs) that are in a same transmission time interval (TTI). The CTU refers to a transmission resource combining: a time, a frequency, and a code domain; a transmission resource combining a time, a frequency, and a pilot; or a transmission resource combining a time, a frequency, a code domain, and a pilot. The uplink data transmitted by using the at least two CTUs is partially the same or totally the same. The method further comprises the terminal device sending a second message including indication information, where the indication information is used to enable the terminal device to determine, according to the indication information, a CTU for uplink data transmission.