摘要:
A thyristor includes a semiconductor body having an anode-side base zone of a first conductance type, and having a cathode-side base zone of the second, opposite conductance type, and has cathode-side and anode-side emitter zones. An anode-side defect zone is included within the anode-side base zone, in which the free charge carriers have a reduced life, with a predetermined thickness of at least 20 &mgr;m. The defect zone may be produced by anode-side irradiation of predetermined regions of the semiconductor body with charged particles, and with heat treatment of the semiconductor body in order to stabilize the defect zone.
摘要:
The effective doping profile of a finished thyristor is altered with helium ions radiated into a region provided for triggering the thyristor in such a way that the breakover voltage for overhead ignition is increased or reduced. Doping profile changes made in the cathode side half of the anode side base provide effective results, e.g. in the vicinity of the pn junction between the anode side and the cathode side base. The helium ions generate acceptor-type states that lower the effective n doping.
摘要:
A vertical semiconductor device includes a semiconductor body, and first and second contacts on opposite sides of the semiconductor body. A plurality of regions are formed in the semiconductor body including, in a direction from the first contact to the second contact, a first region of a first conductivity type, a second region of a second conductivity type; and a third region of the first conductivity type. The third region is electrically connected to the second contact. A semiconductor zone of the second conductivity type and increased doping density is arranged in the second region. The semiconductor zone separates a first part of the second region from a second part of the second region. The semiconductor zone has a maximum doping density exceeding about 1016 cm−3 and a thickness along the direction from the first contact to the second contact of less than about 3 μm.
摘要:
A bipolar power semiconductor component configured as an IGBT includes a semiconductor body, in which a p-doped emitter, an n-doped base, a p-doped base and an n-doped main emitter are arranged successively in a vertical direction. The p-doped emitter has a number of heavily p-doped zones having a locally increased p-type doping.
摘要:
A semiconductor device includes a first trench and a second trench extending into a semiconductor body from a surface. A body region of a first conductivity type adjoins a first sidewall of the first trench and a first sidewall of the second trench, the body region including a channel portion adjoining to a source structure and being configured to be controlled in its conductivity by a gate structure. The channel portion is formed at the first sidewall of the second trench and is not formed at the first sidewall of the first trench. An electrically floating semiconductor zone of the first conductivity type adjoins the first trench and has a bottom side located deeper within the semiconductor body than the bottom side of the body region.
摘要:
A semiconductor device in one embodiment has a first connection region, a second connection region and a semiconductor volume arranged between the first and second connection regions. Provision is made, within the semiconductor volume, in the vicinity of the second connection region, of a field stop zone for spatially delimiting a space charge zone that can be formed in the semiconductor volume, and of an anode region adjoining the first connection region. The dopant concentration profile within the semiconductor volume is configured such that the integral of the ionized dopant charge over the semiconductor volume, proceeding from an interface of the anode region which faces the second connection region, in the direction of the second connection region, reaches a quantity of charge corresponding to the breakdown charge of the semiconductor device only near the interface of the field stop zone which faces the second connection region.
摘要:
A bipolar power semiconductor component configured as an IGBT includes a semiconductor body, in which a p-doped emitter, an n-doped base, a p-doped base and an n-doped main emitter are arranged successively in a vertical direction. The p-doped emitter has a number of heavily p-doped zones having a locally increased p-type doping.
摘要:
A semiconductor device includes a first trench and a second trench extending into a semiconductor body from a surface. A body region of a first conductivity type adjoins a first sidewall of the first trench and a first sidewall of the second trench, the body region including a channel portion adjoining to a source structure and being configured to be controlled in its conductivity by a gate structure. The channel portion is formed at the first sidewall of the second trench and is not formed at the first sidewall of the first trench. An electrically floating semiconductor zone of the first conductivity type adjoins the first trench and has a bottom side located deeper within the semiconductor body than the bottom side of the body region.
摘要:
A method for producing a buried n-doped semiconductor zone in a semiconductor body. In one embodiment, the method includes producing an oxygen concentration at least in the region to be doped in the semiconductor body. The semiconductor body is irradiated via one side with nondoping particles for producing defects in the region to be doped. A thermal process is carried out. The invention additionally relates to a semiconductor component with a field stop zone.
摘要:
A vertical semiconductor device comprises a semiconductor body, a first contact and a second contact, wherein a first semiconductor region of a first conductivity type, a second semiconductor region of a second conductivity type and a third semiconductor region of a second conductivity type are formed in the semiconductor body in a direction from the first contact to the second contact, wherein a basic doping density of the second semiconductor region is smaller than a doping density of the third semiconductor region, and wherein in the second semiconductor region a semiconductor zone of the second conductivity type is arranged in which the doping density is increased relative to the basic doping density of the second semiconductor region.