摘要:
A memory system includes a substrate, forming a first insulator over the substrate, forming a charge trap layer, having a composition for setting a predetermined electrical charge level, over the first insulator, and forming a second insulator over the charge trap layer.
摘要:
A method includes forming at least a portion of a semiconductor device in a processing chamber containing oxygen and removing substantially all of the oxygen from the processing chamber. The method further includes forming remaining portions of the semiconductor device in the processing chamber without the presence of oxygen.
摘要:
A semiconductor memory device may include an intergate dielectric layer of a high-K, high barrier height dielectric material interposed between a charge storage layer and a control gate. With this intergate high-K, high barrier height dielectric in place, the memory device may be efficiently erased using Fowler-Nordheim tunneling.
摘要:
Methods 300 and 350 are disclosed for fabricating shallow isolation trenches and structures in multi-bit SONOS flash memory devices. One method aspect 300 comprises forming 310 a multi-layer dielectric-charge trapping-dielectric stack 420 over a substrate 408 of the wafer 402, for example, an ONO stack 420, removing 312 the multi-layer dielectric-charge trapping-dielectric stack 420 in a periphery region 406 of the wafer 402, thereby defining a multi-layer dielectric-charge trapping-dielectric stack 420 in a core region 404 of the wafer 402. The method 300 further comprises forming 314 a gate dielectric layer 426 over the periphery region 406 of the substrate 408, forming 316 a first polysilicon layer 428 over the multi-layer dielectric-charge trapping-dielectric stack 420 in the core region 402 and the gate dielectric 426 in the periphery region 406 , then concurrently forming 318 an isolation trench 438 in the substrate 408 in the core region 404 and in the periphery region 406. Thereafter, the isolation trenches are filled 326 with a dielectric material 446, and a second polysilicon layer 452 that is formed 332 over the first polysilicon layer 428 and the filled trenches 438, forming an self-aligned STI structure 446. The method 300 avoids ONO residual stringers at STI edges in the periphery region, reduces active region losses, reduces thinning of the periphery gate oxide and the ONO at the STI edge, and reduces dopant diffusion during isolation implantations due to reduced thermal process steps.
摘要:
A manufacturing method for a dual bit flash memory includes providing a semiconductor substrate and depositing a charge-trapping dielectric layer with the depositing performed without using ammonia at an ultra-slow deposition rate. First and second bitlines are implanted and a wordline layer is deposited. A hard mask layer is deposited over the wordline layer. A photoresist is deposited over the wordline layer and used to form a hard mask. The photoresist is removed. The wordline layer is processed using the hard mask to form a wordline and the hard mask is removed. A reduced hydrogen, high-density data retention liner to reduce charge loss, covers the wordline and the charge-trapping dielectric layer. An interlayer dielectric layer is deposited over the data retention liner.
摘要:
A method for fabricating a memory device with a self-aligned trap layer and rounded active region corners is disclosed. In the present invention, an STI process is performed before any of the charge-trapping and top-level layers are formed. Immediately after the STI process, the sharp corners of the active regions are exposed. Because these sharp corners are exposed at this time, they are available to be rounded through any number of known rounding techniques. Rounding the corners improves the performance characteristics of the memory device. Subsequent to the rounding process, the charge-trapping structure and other layers can be formed by a self-aligned process.
摘要:
A memory cell system is provided including a first insulator layer over a semiconductor substrate, a charge trap layer over the first insulator layer, and slot where the charge trap layer includes a second insulator layer having the characteristic of being grown.
摘要:
A memory device may include a source region and a drain region formed in a substrate and a channel region formed in the substrate between the source and drain regions. The memory device may further include a first oxide layer formed over the channel region, the first oxide layer having a first dielectric constant, and a charge storage layer formed upon the first oxide layer. The memory device may further include a second oxide layer formed upon the charge storage layer, a layer of dielectric material formed upon the second oxide layer, the dielectric material having a second dielectric constant that is greater than the first dielectric constant, and a gate electrode formed upon the layer of dielectric material.
摘要:
A memory system is provided including forming a memory gate stack having a charge trap layer over a semiconductor substrate, forming a protection layer to cover the memory gate stack, and forming a protection enclosure for the charge trap layer with the protection layer and the memory gate stack.
摘要:
Methods are disclosed for fabricating multi-bit SONOS flash memory cells, comprising forming a first dielectric layer and a charge trapping layer over a substrate of a wafer and selectively etching the dielectric and charge trapping layers down to a substrate region to form a bitline opening, then implanting a dopant ion species into the substrate associated with the bitline opening in a bitline region. A radical oxidation process is then used to form a second dielectric layer of a triple layer dielectric-charge trapping-dielectric stack over the charge trapping layer and to fill the bitline opening in the bitline regions of the wafer. Finally, a wordline structure is then formed over the triple layer dielectric-charge trapping-dielectric stack and the bitline regions of the wafer. A multi-bit flash memory array is also disclosed, comprising a bitline region in a substrate, a first dielectric layer overlying the substrate substantially adjacent to and substantially exposing the bitline region, a charge trapping layer overlying the first dielectric layer substantially adjacent to and substantially exposing the bitline region, a bitline oxide isolation structure or layer extending continuously over the bitline region and charge trapping layer, the isolation structure comprising a single dielectric material layer formed by the radical oxidation process, and a conductive wordline overlying the bitline oxide isolation structure or layer.