摘要:
According to one embodiment, a semiconductor device includes a processor, and a memory device. The memory device has a nonvolatile semiconductor storage device and is configured to serve as a main memory for the processor. When the processor executes a plurality of programs, the processor manages pieces of information required to execute the programs as worksets for the respective programs, and creates tables, which hold relationships between pieces of information required for the respective worksets and addresses of the pieces of information in the memory device, for the respective worksets. The processor accesses to the memory device with reference to the corresponding tables for the respective worksets.
摘要:
A resistance change memory device includes: a memory cell array with memory cells arranged therein, the memory cell having a variable resistance element for storing a rewritable resistance value; a reference cell formed of the same memory cells as those set in a high resistance state in the memory cell array, the reference cell being trimmed with selection of the number of parallel-connected memory cells to have a reference current value used for detecting data in the memory cell array; and a sense amplifier configured to compare a cell current value of a memory cell selected in the memory cell array with the reference current value of the reference cell.
摘要:
An integrated memory management device according to an example of the invention comprises an acquiring unit acquiring a read destination logical address from a processor, an address conversion unit converting the read destination logical address into a read destination physical address of a non-volatile main memory, an access unit reading, from the non-volatile main memory, data that corresponds to the read destination physical address and has a size that is equal to a block size or an integer multiple of the page size of the non-volatile main memory, and transmission unit transferring the read data to a cache memory of the processor having a cache size that depends on the block size or the integer multiple of the page size of the non-volatile main memory.
摘要:
The non-volatile memory device comprises a memory cell array, a block decoder, and a decode signal reading section. The memory cell array has a plurality of cell blocks. Each of the cell blocks is composed of a plurality of memory cells arranged roughly into a matrix pattern. Each memory cell has a floating gate to or from which electrons are injected or extracted to write or erase data. The block decoder receives a block address, and outputs a decode signal to select a cell block corresponding to the block address from the cell blocks. The memory cells of the selected block are erased simultaneously. When a control signal is inputted to the block decoder, the block decoder outputs the decode signal to select all the cell blocks for erasure of the memory cells of all the cell blocks simultaneously, irrespective of the block address. The decode signal reading section outputs the decode signal to the outside. The decode signal is applied to the cell blocks and in parallel to the decode signal reading section itself and further outputted to the outside therethrough. In the memory device, the block erase function can be checked at a short time and additionally the other functional blocks can be checked simply.
摘要:
The invention involves a semiconductor memory device having a memory cell with a drain, a gate and a source. The gate of the memory cell is supplied with a first potential for reading a memory cell data. A first reference line is connected to the drain of a first reference cell to receive a first reference cell data. A second reference cell has a drain, a gate and a source. A second reference line is connected to the drain of the second reference cell for receiving a second reference cell data. A gate voltage generating circuit having an output node is connected to the gate of the first reference cell for controlling the gate potential of the first reference cell so that the potentials at the first and second reference lines have the same power source voltage dependancy. A data detecting circuit reads the memory cell data in accordance with the comparison result between the potentials.
摘要:
A method of programming a resistance change memory device includes: applying program voltage pulses to a memory cell for programming a target resistance value; setting thermal relaxation times between the respective program voltage pulses; and controlling the shape of each the program voltage pulse in accordance with the present cell's resistance value determined by the preceding program voltage pulse application.
摘要:
A resistance change memory device includes: a memory cell array with memory cells arranged therein, the memory cell having a variable resistance element for storing a rewritable resistance value; a reference cell formed of the same memory cells as those set in a high resistance state in the memory cell array, the reference cell being trimmed with selection of the number of parallel-connected memory cells to have a reference current value used for detecting data in the memory cell array; and a sense amplifier configured to compare a cell current value of a memory cell selected in the memory cell array with the reference current value of the reference cell.
摘要:
Data latch circuits are provided corresponding to select memory cells from or into which read or program is executed. The data latch circuits are grouped by two into sets. When 2-bit data is read from or programmed into the select memory cells, one data latch circuit is selected by a select signal, and, when 1-bit data is read or programmed, the two data latch circuits in one set are selected by a select signal. Between one or two selected data latch circuits and a data input/output buffer, data is exchanged. By so doing, changeover between 2-level data and multi-level (4-level or more-level) data concerning program or read of data into or out the memory cells becomes possible.
摘要:
A memory cell section is divided into a data storage area and a data management information storage area in a column direction. The number of memory cells of each of NAND strings of the data management information storage area is smaller than that of memory cells of each of NAND strings of the data storage area. Word lines are connected in common to NAND strings arranged in the column direction in the data storage area, and two of them extend to be connected in common to the NAND strings arranged in the column direction in the data management information storage area. Bit lines are connected in common to the NAND strings arranged in the row direction.
摘要:
According to one embodiment, a storage device management device is connected to a random access memory and a first storage device. When the random access memory includes a free region sufficient to store write data, the write data is stored onto the random access memory. Data on the random access memory selected in the descending order of elapsed time from the last access is sequentially copied onto the first storage device, and a region in the random access memory which has stored the copied data is released. When stored on the random access memory, the read data is read from the random access memory to the processor. When stored on the first storage device, the read data is copied onto the random access memory and read from the random access memory to the processor.