Abstract:
Disclosed is a non-aqueous electrolyte solution for a lithium secondary battery. The non-aqueous electrolyte solution includes a lithium salt, an organic solvent and additives. The additives include: 1 to 10% by weight of a mixture of a particular halogenated cyclic carbonate and a compound containing a vinylene or vinyl group; and 0.1 to 9% by weight of a nitrile compound having a C2-C12 alkoxyalkyl group. A lithium secondary battery including the non-aqueous electrolyte solution is also disclosed. The lithium secondary battery is protected from catching fire when overcharged and is prevented from swelling during storage at high temperature.
Abstract:
Provided are an electrolyte comprising an amide compound of a specific structure, in which an alkoxy group is substituted with an amine group, and an ionizable lithium salt, and an electrochemical device containing the same. The electrolyte may have excellent thermal and chemical stability and a wide electrochemical window. Also, the electrolyte may have a sufficiently low viscosity and a high ionic conductivity, and thus, may be usefully applied as an electrolyte of electrochemical devices using various anode materials.
Abstract:
A slurry composition includes about 4.25 to about 18.5 weight percent of an abrasive, about 80 to about 95 weight percent of deionized water, and about 0.05 to about 1.5 weight percent of an additive. The slurry composition may further include a surfactant. In a polishing method using the slurry composition, a polysilicon layer may be rapidly polished, and also dishing and erosion of the polysilicon layer may be suppressed.
Abstract:
An electrolyte includes (a) a eutectic mixture of an alkoxy alkyl group-containing amide compound and an ionizable lithium salt; and (b) a carbonate-based compound. The electrolyte has excellent thermal and chemical stability and exhibits a low lowest limit of electrochemical window. Also, the electrolyte shows low viscosity and high ion conductivity, so it may be usefully applied as an electrolyte of electrochemical devices using various anode materials.
Abstract:
Provided are a virtual multi-antenna method for an orthogonal frequency division multiplexing (OFDM) system and an OFDM-based cellular system. The virtual multi-antenna method includes grouping sub-carriers in a frequency domain of an OFDM symbol and generating at least one group including G sub-carriers; and regarding the G sub-carriers included in the at least one group as multiple channels used in a multi-antenna technique and virtually applying the multi-antenna technique to the transmission and reception of the OFDM symbol. The virtual multi-antenna method can effectively reduce an interference signal and obtain the effects of a spatial division multiple access (SDMA) technique without physically using multiple antennas.
Abstract:
Disclosed is a cooperative relay station that relays between a base station and a mobile station when retransmitting a signal. Also, disclosed is a base station that receives a signal from a mobile station in mutual cooperation with the cooperative relay station. After the cooperative relay station receives and decodes a signal that the mobile station transmits to the base station or a service relay station, if an error of the decoded signal does not exist, it stores the received signal. If an error occurs when the base station decodes the signal that the mobile station transmits, the base station requests retransmission for the signal with the error to the cooperative relay station. If the cooperative relay station gets a request of retransmission, it transmits the signal that the base station requests to the base station. In this was, since an error rate may be reduced when the base station requests retransmission of the signal, resource reuse efficiency may become improved, interference may be reduced, and it is easy to adapt to a service being sensitive to time delay.
Abstract:
Disclosed is an electrolyte comprising (a) a eutectic mixture of an amide compound represented by the following chemical formula 1 or 2 and an ionizable lithium salt; and (b) a nitrile compound. The eutectic mixture and the nitrile compound in the electrolyte contribute to excellent thermal and chemical stability and sufficiently low viscosity and high ion conductivity. The electrolyte can be usefully applied as an electrolyte of electrochemical devices.
Abstract:
The present invention relates to a transmitter in a frequency division multiple access communication system. The transmitter generates a plurality of pilot symbols, and groups the plurality of pilot symbols into a plurality of groups according to a location of a subcarrier. In addition, the transmitter inverse fast Fourier transforms the pilot symbol in each group, and sequentially outputs a first pilot symbol sequence corresponding to each group. The transmitter generates a plurality of pilot blocks respectively corresponding to the plurality of groups, and converts the first pilot symbol sequence of each group into a second pilot symbol sequence of a corresponding pilot block among the plurality of pilot blocks.
Abstract:
An organic light emitting display and a driving method for the same for preventing picture playback disruption during the playback of a moving picture. An organic light emitting display includes: a display region including a plurality of pixels for displaying an image; a frame memory for storing image signals of the image; a data driver for receiving the image signals to generate data signals; a scan driver for generating scan signals; and a controller for controlling the frame memory to store the image signals and to transfer the image signals stored in the frame memory to the data driver. The controller controls the frame memory to store the image signals for at least two horizontal synchronization periods before they are transferred to the data driver.
Abstract:
A slurry composition includes about 4.25 to about 18.5 weight percent of an abrasive, about 80 to about 95 weight percent of deionized water, and about 0.05 to about 1.5 weight percent of an additive. The slurry composition may further include a surfactant. In a polishing method using the slurry composition, a polysilicon layer may be rapidly polished, and also dishing and erosion of the polysilicon layer may be suppressed.