Abstract:
An image capturing device comprises an elongated body, an imaging window coupled to a distal end of the elongated body, and a heat source within the elongated body. The heat source is configured to apply heat to the imaging window to remove condensation from or prevent condensation from forming on the imaging window.
Abstract:
A stiffening assembly comprises a bulkhead including an inner surface shaped to define a central lumen, an outer surface surrounding the inner surface, and a wall connecting the outer and inner surfaces and shaped to form a plurality of holes spaced apart and surrounding the lumen. The stiffening assembly also comprises a plurality of longitudinal beams, each longitudinal beam extending through a corresponding hole of the plurality of holes. The stiffening assembly also comprises a clamping assembly configured to contact the plurality of longitudinal beams. The stiffening assembly is adjustable between a flexible state in which each longitudinal beam is movable within the corresponding hole of the plurality of holes and a stiffened state in which the clamping assembly clamps the plurality of longitudinal beams against the bulkhead such that transfer of shear forces between the plurality of longitudinal beams and the bulkhead stiffens the stiffening assembly.
Abstract:
A compliant surgical device such as a flexible entry guide employs tendons to operate or steer the device and attaches asymmetric or constant force spring systems to control tension in the tendons. As a result, the surgical device can be compliant and respond to external forces during a surgical procedure without rapidly springing back or otherwise causing a reaction that damages tissue. The compliance also permits manual positioning or shaping of the device during or before insertion for a surgical procedure without damaging the tendons or connections of the tendons within the device or to a backend mechanism
Abstract:
A shaft for a surgical instrument comprises an outer tube having a proximal end and a distal end, a central lumen extending through the outer tube, and a plurality of stiffening rods positioned around the central lumen. The plurality of stiffening rods may comprise a nonconductive material. The shaft may form part of an electrosurgical instrument. In another embodiment, a surgical instrument may comprise an end effector and a shaft having an outer tube having a proximal end and a distal end, a drive rod, and at least four stiffening rods positioned around the drive rod, each stiffening rod being positioned substantially immediately adjacent to the drive rod. The axial stiffness of the shaft increases incrementally during actuation of the end effector.
Abstract:
A robotic system includes a processor that is programmed to determine and cause work site measurements for user specified points in the work site to be graphically displayed in order to provide geometrically appropriate tool selection assistance to the user. The processor is also programmed to determine an optimal one of a plurality of tools of varying geometries for use at the work site and to cause graphical representations of at least the optimal tool to be displayed along with the work site measurements.
Abstract:
A medical device such as an endoscope, a laparoscope, or other device including an entry guide uses outriggers or arms that are mounted on the distal end of the entry guide and rotationally deployed to provide separation of instruments when the entry guide reaches a work site. Deployment can be implemented with as few as one cable or actuator to operate the arms. This mechanism may achieve working separation in a short axial length without complicating instrument channels that may be used for other instruments introduced through the entry guide.
Abstract:
A force transmission mechanism for a teleoperated surgical instrument may include a gear, a push/pull drive element, and a connection element. The push/pull drive element may be configured to transmit force to actuate an end effector of the surgical instrument and to rotate with a shaft of the surgical instrument when the shaft is rotated by the force transmission mechanism. The connection element may operatively couple the gear and the push/pull drive element. The connection element may be configured to convert rotational movement of the gear to a substantially linear movement of the push/pull drive element. The connection element may be configured to rotate with the push/pull drive element and relative to the gear.
Abstract:
An apparatus includes a reference fixture. The reference fixture includes a joint, and a joint tracker to track motion of the joint. The apparatus also includes a surgical instrument. A tether is connected between the joint and the surgical instrument. A shape sensor extends from the reference fixture through the joint, through the tether, and into the surgical instrument. The shape sensor is substantially free of twist. The joint tracker measures the motion of the joint. Information from the shape sensor in combination with information from the joint tracker provides absolute three-dimensional information relative to the reference fixture, i.e., provides absolute three-dimensional information in a fixed world reference frame.
Abstract:
An apparatus includes a reference fixture. The reference fixture includes a joint, and a joint tracker to track motion of the joint. The apparatus also includes a surgical instrument. A tether is connected between the joint and the surgical instrument. A shape sensor extends from the reference fixture through the joint, through the tether, and into the surgical instrument. The shape sensor is substantially free of twist. The joint tracker measures the motion of the joint. Information from the shape sensor in combination with information from the joint tracker provides absolute three-dimensional information relative to the reference fixture, i.e., provides absolute three-dimensional information in a fixed world reference frame.
Abstract:
A medical device such as an endoscope, a laparoscope, or other device including an entry guide uses outriggers or arms that are mounted on the distal end of the entry guide and rotationally deployed to provide separation of instruments when the entry guide reaches a work site. Deployment can be implemented with as few as one cable or actuator to operate the arms. This mechanism may achieve working separation in a short axial length without complicating instrument channels that may be used for other instruments introduced through the entry guide.