摘要:
The present invention relates to an optical amplifier and, in particular, it relates to multistage optical amplification having a feature for compensating for the tilt that is generated when a signal having a plurality of optical wavelengths and the like according to a wavelength division multiplexing (WDM) method is amplified in a wide bandwidth. The multistage optical amplifier comprises: a plurality of optical amplifiers that are connected in a multistage manner; and a common control section for commonly controlling pumping light powers of said plurality of optical amplifiers, wherein said common control section includes: tilt detection means for detecting amounts of tilt of each of said plurality of optical amplifiers; and tilt cancellation means for controlling the pumping light powers of said plurality of optical amplifiers so that the amounts of tilt of each of the optical amplifiers detected by said tilt detection means cancel each other.
摘要:
The invention provides an optical wavelength multiplex transmission method wherein a band in the proximity of a zero dispersion wavelength of an optical fiber is used and optical signals are disposed at efficient channel spacings taking an influence of the band, the wavelength dispersion and the four wave mixing into consideration to realize an optical communication system of an increased capacity which is not influenced by crosstalk by FWM. When optical signals of a plurality of channels having different wavelengths are to be multiplexed and transmitted using an optical fiber, a four wave mixing suppressing guard band of a predetermined bandwidth including the zero-dispersion wavelength λ0 of the optical fiber is set, and signal light waves of the plurality of channels to be multiplexed are arranged on one of the shorter wavelength side and the longer wavelength side outside the guard band.
摘要:
The invention provides an optical wavelength multiplex transmission method wherein a band in the proximity of a zero dispersion wavelength of an optical fiber is used and optical signals are disposed at efficient channel spacings taking an influence of the band, the wavelength dispersion and the four wave mixing into consideration to realize an optical communication system of an increased capacity which is not influenced by crosstalk by FWM. When optical signals of a plurality of channels having different wavelengths are to be multiplexed and transmitted using an optical fiber, a four wave mixing suppressing guard band of a predetermined bandwidth including the zero-dispersion wavelength &lgr;&thgr; of the optical fiber is set, and signal light waves of the plurality of channels to be multiplexed are arranged on one of the shorter wavelength side and the longer wavelength side outside the guard band.
摘要:
The invention provides a technique for optimizing transmission conditions to achieve large-capacity transmission, and also provides peripheral techniques for the practical implementation of optical multiplexing that makes large-capacity transmission possible. A transmission characteristic is measured in a transmission characteristic measuring section, and control of signal light wavelength in a tunable light source, control of the amount of prechirping, control of the amount of dispersion compensation, and/or control of optical power are performed to achieve the best transmission characteristic. Wavelength dispersion is deliberately introduced by a dispersion compensator, to reduce nonlinear effects. A tunable laser is used to optimize signal light wavelength for each optical amplification repeater section. Peripheral techniques, such as drift compensation, clock extraction, optical signal channel identification, clock phase stabilization, etc., are provided for the implementation of optical multiplexing.
摘要:
The invention provides an optical wavelength multiplex transmission method wherein a band in the proximity of a zero dispersion wavelength of an optical fiber is used and optical signals are disposed at efficient channel spacings taking an influence of the band, the wavelength dispersion and the four wave mixing into consideration to realize an optical communication system of an increased capacity which is not influenced by crosstalk by FWM. When optical signals of a plurality of channels having different wavelengths are to be multiplexed and transmitted using an optical fiber, a four wave mixing suppressing guard band of a predetermined bandwidth including the zero-dispersion wavelength .lambda..sub.0 of the optical fiber is set, and signal light waves of the plurality of channels to be multiplexed are arranged on one of the shorter wavelength side and the longer wavelength side outside the guard band.
摘要:
A dispersion measurement apparatus includes: a pulse generator to output optical pulses including an optical pulse with a first wavelength and an optical pulse with a second wavelength to an optical transmission path, the second wavelength being different from the first wavelength; a reception pulse analyzer including an optical receiver that receives the optical pulses output by the pulse generator, and an analyzer that performs a wavelet transform on an electrical pulse output through the reception performed by the optical receiver; and a calculator to detect, based on a result of the wavelet transform, a time difference between the optical pulse with the first wavelength and the optical pulse with the second wavelength, and to determine dispersion in the optical transmission path.
摘要:
An optical transmission system includes a plurality of optical nodes that transmits wavelength multiplexing light including a plurality of signal light components having different wavelengths, wherein each of the optical nodes includes superimposed signal light generation circuit which superimposes a low frequency signal having a common frequency on a corresponding signal light component included in the wavelength multiplexing light; low frequency signal extraction circuit which extracts a low frequency signal having a frequency of a given range from a corresponding signal light component; and pass-through node number measurement circuit which measures, for each of the signal light components, a pass-through node number based on the frequency of the low frequency signal extracted by the low frequency signal extraction circuit, the pass-through node number being the number of optical nodes through which the signal light component has passed before being transmitted to a specific optical node.
摘要:
A chirp switching circuit comprises a Mach-Zehnder modulator having a Y-branched part for branching an incoming optical signal into first and second optical signals and an X-branched part merging the first and second optical signals with each other, the Mach-Zehnder modulator causing phase modulation in the first and second optical signals by a modulation signal, and a directional coupling optical switch that switches first and second optical output signals output from the X-branched part of the Mach-Zehnder modulator by merging the first and second output optical signals in response to a chirp switching control signal.
摘要:
In an optical transmission system which can keep a flat pass characteristic within an optical signal modulation band, a spectrum of a dropped optical signal within a modulation band per channel is monitored, and non-flatness for the optical signal is compensated by detecting the non-flatness of a pass characteristic of a transmission line from the spectrum.
摘要:
A control method, which is applicable to a variety of network configurations, controls an optical transmission system to determine optimum optical input power to a transmission path for increased optical transmission quality. The optical transmission system has terminal stations, repeaters, dispersion compensation modules, and a dispersion compensation controller. The terminal stations transmit and receive an optical signal through an optical fiber transmission path. The repeaters are disposed in the optical fiber transmission path for amplifying the optical signal. The dispersion compensation modules are disposed in the terminal stations and the repeaters for compensating for dispersion of the optical signal. The dispersion compensation controller determines a target value for a nonlinear phase shift, which is an indication of a self-phase modulation caused by a transmission medium of the optical fiber transmission path, to have a maximum residual dispersion tolerance, and adjusts at least one of the input powers applied to transmission paths connected to the terminal stations or the repeaters and the input powers applied to the dispersion compensation modules to equalize the nonlinear phase shifts of paths in the optical transmission system to the target value.