Abstract:
An organic luminescent display device according to the invention includes: an element substrate; an organic film; and an organic electro luminescent element formed on the organic film. The organic electro luminescent element includes: an anode formed on the organic film; a light emitting layer formed on the anode; and a cathode formed on the light emitting layer. The anode includes: an adhesion layer formed in contact with an upper surface of the organic film; a reflection layer and formed in contact with an upper surface of the adhesion layer; and a light transmitting contact layer formed on the reflection layer. An edge portion of an outer periphery of the adhesion layer is positioned outside an edge portion of an outer periphery of the reflection layer as viewed in a plan view.
Abstract:
An organic EL display device includes an inorganic insulating film including a contact part as an opening where a contact electrode made of a conductive film is exposed, a TFT circuit layer provided on the inorganic insulating film and including a circuit including a thin film transistor, an organic EL element layer provided on the TFT circuit layer and including an organic EL element whose light emission is controlled by the circuit, and a sealing layer covering the organic EL element layer and made of an inorganic insulating material.
Abstract:
A circuit unit is provided in which it is possible to connect circuit board to a terminal using a simple operation without removing a passivation film from above the terminal. A metal electrode which conducts with a circuit element is formed above a substrate. Multiple column shaped insulation films are each formed at a uniform pitch in two intersecting directions above the surface of the metal electrode. A metal electrode is formed above the metal electrode including the insulation film. A passivation film is formed on a surface of the metal electrode. Conductive beads are stuck between pairs of projection structured bodies formed on a surface of the passivation film, the passivation film on a side surface of the projection structure is scraped whereby the conductive beads conduct simultaneously with the metal electrode and an electrode formed on the circuit board.
Abstract:
A first substrate provided with a plurality of pixel electrodes is prepared. A bank layer is formed so as to be placed on the periphery of each pixel electrode to define a plurality of pixel regions and contain a metal ion adsorbent. An organic electro-luminescence film is formed so as to be placed on the bank layer and the plurality of pixel electrodes and contain a metal complex which is a compound having a ligand coordinated to a metal ion. A common electrode is formed on the organic electro-luminescence film. The organic electro-luminescence film is formed such that the concentration of the metal ions is decreased above the bank layer by the metal ion adsorbent.
Abstract:
An organic EL display device includes: thin film transistors that are arranged in respective pixels within a display area which are arranged in a matrix; a planarization film that is formed over the thin film transistor and made of an organic insulating material; contact electrodes that are connected to drains or sources of the respective thin film transistors through contact holes formed within the planarization film; contact hole planarization films that are arranged over the respective contact electrodes with which the contact holes are embedded, and made of an organic insulating material; a lower electrode that is formed to be electrically connected onto the contact electrodes, and formed over the contact hole planarization film; and an organic layer that is arranged over the lower electrode to cover the overall display area, and formed of a plurality of organic material layers including a light emitting layer.
Abstract:
Damage of a color filter due to erosion or the like in a process of patterning a light-shielding film to form a black matrix laminated on the color filter of a display device is prevented. Plural color filters are formed on a second substrate correspondingly to pixels. Protection films laminated on upper surfaces of the respective color filters are formed. A light-shielding film is laminated on a surface of the second substrate on which the protection films are formed. The light-shielding film is processed while the protection films are used as damage stoppers, and light-shielding members made of the light-shielding film selectively left along boundaries of the pixels are formed.
Abstract:
A sealing film includes a first inorganic layer that has, in a surface thereof, a convex portion corresponding to an upper surface of an element layer, a second inorganic layer that covers the first inorganic layer, and an organic layer disposed between these layers. The surface of the first inorganic layer includes a recurved area changed from an area around the convex portion to the convex portion, and a flat area surrounding the element layer. The flat area includes an outer peripheral area on an outer end of the first inorganic layer, and an inner peripheral area between the outer peripheral area and the recurved area. The organic layer has an end in the outer peripheral area, has another portion in the recurved area, and avoids the inner peripheral area. A part of the second inorganic layer contacts the first inorganic layer in the inner peripheral area.
Abstract:
A display module including a substrate having a plurality of pixels, a data line that supplies a data signal to a pixel, a current supply line that supplies electric current to the pixel, a data driving circuit that supplies a data signal to the data line, and a gate driving circuit thereon. The plurality of pixels are arranged in a display area of the substrate, and each of the plurality of pixels includes a light emitting device, a first thin film transistor connected to the data line that supplies the data signal, a second thin film transistor connected to the current supply line, and a capacitor. The light emitting device includes a first electrode layer connected to the second thin film transistor, an organic layer formed on the first electrode layer, and a second electrode layer formed on the organic layer.
Abstract:
There is provided an EL display device of a color filter system which obtains sufficient brightness and contrast while making it difficult to generate a color mixture even if pixels become fine. An EL display device 100 according to the present invention includes a first substrate 1, a circuit layer 2 formed on the first substrate 1, a color selection reflection layer 11 formed in an upper layer of the circuit layer 2, lower electrodes 5 formed in an upper layer of the color selection reflection layer 11, a white light emission EL layer 7 formed in an upper layer of the lower electrodes 5, an upper electrode 8 formed in an upper layer of the EL layer 7, and a sealing layer 9 formed in an upper layer of the upper electrode 8.
Abstract:
An organic electroluminescent device with a touch sensor including: a first substrate; a second substrate arranged opposite to the first substrate; an organic EL element layer arranged above the first substrate; a first scaling film arranged toward the second substrate of the organic EL element layer, covering the organic EL element layer, and including a first inorganic layer; plural first detection electrodes extending in one direction, and arranged in parallel toward the second substrate of the first sealing film; a second sealing film arranged toward the second substrate of the first detection electrodes, and including a second inorganic layer; plural second detection electrodes extending in another direction different from the one direction, and arranged in parallel toward the second substrate of the second sealing film; and a touch sensor control unit controlling a potential to detect a touch with a display surface.