Abstract:
An interconnect member for socket connector includes a carrier having opposite first and second sides. A plurality of polymer columns are held in the carrier. Each polymer column includes a first end extending from the first side of the carrier and a second end extending from the second side of the carrier. A contact array includes a plurality of electrical contacts held in the carrier. Each of the plurality of contacts includes a body that extends through the carrier and opposite end portions positioned to engage respective first and second ends of the polymer columns. Each end portion includes a contact tip configured to electrically engage a contact pad on one of a circuit board and an electronic package. The polymer columns simultaneously provide a predetermined normal force to establish reliable electrical connectivity between the circuit board and the electronic package and a predetermined working range for the interconnect member.
Abstract:
Stacked LAN connector (10) adapted for mounting to a circuit board (24) and including a stacked USB component (150) and a modular jack component (200) secured in respective portions of main housing (50), around which is an outer shield (32). An inner shield (130) shields the arrays of contacts of the modular jack component (200) and the stacked USB component (150) as they depend from the board mounting face to be connected to circuits of the circuit board (24). LEDs (28,30) indicate full mating by a modular plug with the modular jack component. The connector saves board real estate otherwise occupied by a modular jack positioned beside a stacked USB connector on the circuit board.
Abstract:
A connector assembly having a connector body that includes a support structure and a mating side and has an adjustable cavity therebetween. The mating side has a mating array of terminals thereon that is configured to face a communication component. The mating side is moveable relative to the support structure. The connector assembly also includes an elastic container having a reservoir that holds a working fluid. The elastic container is positioned within the adjustable cavity between the support structure and the mating side. The elastic container changes between first and second shapes to move the mating side toward and away from the communication component.
Abstract:
A connector assembly that includes a base frame extending along a longitudinal axis between a pair of frame ends. The connector assembly also includes a moveable side that is supported by the base frame and extends in a direction along the longitudinal axis. The moveable side includes a mating array of terminals. The connector assembly also includes a flex connection that is communicatively coupled to the mating array. The flex connection and the mating array are configured to transmit data signals. The connector assembly also includes a coupling mechanism that is supported by the base frame and is operatively coupled to the moveable side. The coupling mechanism is configured to be actuated to move the moveable side between retracted and engaged positions along a mating direction.
Abstract:
An electrical connector assembly couples a circuit board with at least one of a motherboard and a backplane board. The connector assembly includes a connector and a flexible circuit member. The connector has a mating interface and a mounting interface. The mating interface electrically couples the connector with the circuit board. The mounting interface secures the connector to the motherboard. The flexible circuit member electrically interconnects the mating and mounting interfaces with one another and with at least one of the motherboard and the backplane board. The flexible circuit member electrically interconnects the circuit board with the backplane board via a conductive pathway that bypasses the motherboard.
Abstract:
An electrical connector is provided. The electrical connector includes a substrate and an elastomeric element extending outwardly from the substrate. The elastomeric element extends outwardly from a base portion thereof at the substrate to an end portion thereof that is opposite the base portion. An electrical contact engages an electrically conductive element of the substrate. The electrical contact has a portion extending over at least a portion of the end portion of the elastomeric element.
Abstract:
A receptacle assembly for an electrical connector is provided. The assembly includes a housing, a plurality of electrical contacts and a shield. The housing includes a mating end and a mounting end that are orthogonal to each other. The mating end of the housing is elongated along a longitudinal axis of the housing. The electrical contacts are held by the housing and extend between a mating end presented at the mating end of the housing and a mounting end configured to be mounted to a circuit board. The shield has a mating interface elongated along a longitudinal axis. The shield is configured to receive the electrical connector. The housing and the contacts are located within the shield. The longitudinal axes of the housing and the mating interface are orthogonal to the circuit board.
Abstract:
An electrical connector includes a dielectric housing having a tongue including an upper surface, a lower surface, and opposite side surfaces. A plurality of signal contacts are held by the housing and are exposed along the upper surface. At least one power contact is held by the housing and is exposed along one of the opposite side surfaces. Optionally, the tongue and signal contacts define an eSATA mating interface configured for mating with a plug of a serial cable defining an eSATA plug interface.
Abstract:
A shielded electrical connector includes an insulative housing having a receptacle therein. A shield is mounted on the housing. The shield has a protrusion formed thereon that is received in the receptacle. The protrusion engages a surface on the housing to minimize relative motion between the shield and the housing. The shield includes a shroud and the protrusion is located on the shroud. The receptacle is located proximate a mating end of the housing. The shield includes a mounting tab for mounting the connector to a panel.
Abstract:
A bifurcated conductive pad positioned on an electrical mating component, such as a circuit card, a contact portion of a cable assembly, or the like, having a main body and a mating edge. The bifurcated conductive pad receives a mating element having a built-up charge. The conductive pad comprises an initial contact portion and a final contact portion. The initial contact portion is configured to receive the mating element before the final contact portion receives the mating element, and wherein at least one of the initial and final contact portions is grounded so that the final contact portion receives a reduced amount of the built-up charge.