Broadcast transmission with spatial spreading in a multi-antenna communication system
    36.
    发明授权
    Broadcast transmission with spatial spreading in a multi-antenna communication system 有权
    在多天线通信系统中具有空间扩展的广播传输

    公开(公告)号:US07899131B2

    公开(公告)日:2011-03-01

    申请号:US11870380

    申请日:2007-10-10

    IPC分类号: H04L27/04 H04B7/02

    摘要: An access point in a multi-antenna system broadcasts data using spatial spreading to randomize an “effective” channel observed by each user terminal for each block of data symbols broadcast by the access point. At the access point, data is coded, interleaved, and modulated to obtain ND data symbol blocks to be broadcast in NM transmission spans, where ND≧1 and NM>1. The ND data symbol blocks are partitioned into NM data symbol subblocks, one subblock for each transmission span. A steering matrix is selected (e.g., in a deterministic or pseudo-random manner from among a set of L steering matrices) for each subblock. Each data symbol subblock is spatially processed with the steering matrix selected for that subblock to obtain transmit symbols, which are further processed and broadcast via NT transmit antennas and in one transmission span to user terminals within a broadcast coverage area.

    摘要翻译: 多天线系统中的接入点使用空间扩展广播数据,以随机化由接入点广播的每个数据符号块由每个用户终端观察到的“有效”信道。 在接入点,对数据进行编码,交织和调制,以获得ND数据符号块,在ND传输范围内广播,其中ND≥1,NM> 1。 ND数据符号块被划分为NM数据符号子块,每个传输跨度的一个子块。 对于每个子块,选择导向矩阵(例如,从一组L个导引矩阵中以确定性或伪随机方式)。 利用为该子块选择的导引矩阵来对每个数据符号子块进行空间处理,以获得进一步的处理并经由NT个发射天线广播的传输符号,并在一个传输范围内广播到广播覆盖区域内的用户终端。

    Eigenvalue decomposition and singular value decomposition of matrices using Jacobi rotation
    37.
    发明授权
    Eigenvalue decomposition and singular value decomposition of matrices using Jacobi rotation 有权
    使用Jacobi旋转的矩阵的特征值分解和奇异值分解

    公开(公告)号:US07895254B2

    公开(公告)日:2011-02-22

    申请号:US11280596

    申请日:2005-11-15

    IPC分类号: G06F7/32

    摘要: Techniques for decomposing matrices using Jacobi rotation are described. Multiple iterations of Jacobi rotation are performed on a first matrix of complex values with multiple Jacobi rotation matrices of complex values to zero out the off-diagonal elements in the first matrix. For each iteration, a submatrix may be formed based on the first matrix and decomposed to obtain eigenvectors for the submatrix, and a Jacobi rotation matrix may be formed with the eigenvectors and used to update the first matrix. A second matrix of complex values, which contains orthogonal vectors, is derived based on the Jacobi rotation matrices. For eigenvalue decomposition, a third matrix of eigenvalues may be derived based on the Jacobi rotation matrices. For singular value decomposition, a fourth matrix with left singular vectors and a matrix of singular values may be derived based on the Jacobi rotation matrices.

    摘要翻译: 描述了使用雅可比旋转分解矩阵的技术。 对具有复数值的多个Jacobi旋转矩阵的复数值的第一矩阵执行Jacobi旋转的多次迭代,以将第一矩阵中的非对角线元素归零。 对于每次迭代,可以基于第一矩阵形成子矩阵并分解以获得子矩阵的特征向量,并且可以与特征向量形成雅可比旋转矩阵并用于更新第一矩阵。 基于Jacobi旋转矩阵导出包含正交向量的第二个复数值矩阵。 对于特征值分解,可以基于Jacobi旋转矩阵导出特征值的第三矩阵。 对于奇异值分解,可以基于雅可比旋转矩阵导出具有左奇异矢量的第四矩阵和奇异值矩阵。

    EFFICIENT COMPUTATION FOR EIGENVALUE DECOMPOSITION AND SINGULAR VALUE DECOMPOSITION OF MATRICES
    38.
    发明申请
    EFFICIENT COMPUTATION FOR EIGENVALUE DECOMPOSITION AND SINGULAR VALUE DECOMPOSITION OF MATRICES 审中-公开
    特征值分解和矩阵的单值分解的有效计算

    公开(公告)号:US20100169396A1

    公开(公告)日:2010-07-01

    申请号:US12720017

    申请日:2010-03-09

    IPC分类号: G06F17/16 G06F7/487

    摘要: For eigenvalue decomposition, a first set of at least one variable is derived based on a first matrix being decomposed and using Coordinate Rotational Digital Computer (CORDIC) computation. A second set of at least one variable is derived based on the first matrix and using a look-up table. A second matrix of eigenvectors of the first matrix is then derived based on the first and second variable sets. To derive the first variable set, CORDIC computation is performed on an element of the first matrix to determine the magnitude and phase of this element, and CORDIC computation is performed on the phase to determine the sine and cosine of this element. To derive the second variable set, intermediate quantities are derived based on the first matrix and used to access the look-up table.

    摘要翻译: 对于特征值分解,基于正在分解的第一矩阵并使用坐标旋转数字计算机(CORDIC)计算来导出至少一个变量的第一组。 基于第一矩阵并使用查找表导出第二组至少一个变量。 然后基于第一和第二变量集导出第一矩阵的特征向量的第二矩阵。 为了导出第一变量集,对第一矩阵的元素执行CORDIC计算,以确定该元素的幅度和相位,并且在相位上执行CORDIC计算以确定该元素的正弦和余弦。 为了导出第二变量集,基于第一矩阵导出中间量并用于访问查找表。

    Efficient computation for eigenvalue decomposition and singular value decomposition of matrices
    39.
    发明授权
    Efficient computation for eigenvalue decomposition and singular value decomposition of matrices 有权
    矩阵特征值分解和奇异值分解的有效计算

    公开(公告)号:US07711762B2

    公开(公告)日:2010-05-04

    申请号:US11096839

    申请日:2005-03-31

    IPC分类号: G06F17/16

    摘要: For eigenvalue decomposition, a first set of at least one variable is derived based on a first matrix being decomposed and using Coordinate Rotational Digital Computer (CORDIC) computation. A second set of at least one variable is derived based on the first matrix and using a look-up table. A second matrix of eigenvectors of the first matrix is then derived based on the first and second variable sets. To derive the first variable set, CORDIC computation is performed on an element of the first matrix to determine the magnitude and phase of this element, and CORDIC computation is performed on the phase to determine the sine and cosine of this element. To derive the second variable set, intermediate quantities are derived based on the first matrix and used to access the look-up table.

    摘要翻译: 对于特征值分解,基于正在分解的第一矩阵并使用坐标旋转数字计算机(CORDIC)计算来导出至少一个变量的第一组。 基于第一矩阵并使用查找表导出第二组至少一个变量。 然后基于第一和第二变量集导出第一矩阵的特征向量的第二矩阵。 为了导出第一变量集,对第一矩阵的元素执行CORDIC计算,以确定该元素的幅度和相位,并且在相位上执行CORDIC计算以确定该元素的正弦和余弦。 为了导出第二变量集,基于第一矩阵导出中间量并用于访问查找表。