摘要:
For transmit diversity in a multi-antenna OFDM system, a transmitter encodes, interleaves, and symbol maps traffic data to obtain data symbols. The transmitter processes each pair of data symbols to obtain two pairs of transmit symbols for transmission from a pair of antennas either (1) in two OFDM symbol periods for space-time transmit diversity or (2) on two subbands for space-frequency transmit diversity. NT·(NT−1)/2 different antenna pairs are used for data transmission, with different antenna pairs being used for adjacent subbands, where NT is the number of antennas. The system may support multiple OFDM symbol sizes. The same coding, interleaving, and modulation schemes are used for different OFDM symbol sizes to simplify the transmitter and receiver processing. The transmitter performs OFDM modulation on the transmit symbol stream for each antenna in accordance with the selected OFDM symbol size. The receiver performs the complementary processing.
摘要:
Techniques for facilitating random access in wireless multiple-access communication systems are described. A random access channel (RACH) is defined to comprise a “fast” RACH (F-RACH) and a “slow” RACH (S-RACH). The F-RACH and S-RACH can efficiently support user terminals in different operating states and employ different designs. The F-RACH can be used to quickly access the system, and the S-RACH is more robust and can support user terminals in various operating states and conditions. The F-RACH may be used by user terminals that have registered with the system and can compensate for their round trip delays (RTDs) by properly advancing their transmit timing. The S-RACH may be used by user terminals that may or may not have registered with the system, and may or may not be able to compensate for their RTDs. Other aspects, embodiments, and features are also claimed and described.
摘要:
Techniques for facilitating random access in wireless multiple-access communication systems are described. A random access channel (RACH) is defined to comprise a “fast” RACH (F-RACH) and a “slow” RACH (S-RACH). The F-RACH and S-RACH can efficiently support user terminals in different operating states and employ different designs. The F-RACH can be used to quickly access the system, and the S-RACH is more robust and can support user terminals in various operating states and conditions. The F-RACH may be used by user terminals that have registered with the system and can compensate for their round trip delays (RTDs) by properly advancing their transmit timing. The S-RACH may be used by user terminals that may or may not have registered with the system, and may or may not be able to compensate for their RTDs. Other aspects, embodiments, and features are also claimed and described.
摘要:
Techniques for facilitating random access in wireless multiple-access communication systems. A random access channel (RACH) is defined to comprise a “fast” RACH (F-RACH) and a “slow” RACH (S-RACH). The F-RACH and S-RACH can efficiently support user terminals in different operating states and employ different designs. The F-RACH can be used to quickly access the system, and the S-RACH is more robust and can support user terminals in various operating states and conditions. The F-RACH may be used by user terminals that have registered with the system and can compensate for their round trip delays (RTDs) by properly advancing their transmit timing. The S-RACH may be used by user terminals that may or may not have registered with the system, and may or may not be able to compensate for their RTDs. The user terminals may use the F-RACH or S-RACH, or both, to gain access to the system.
摘要:
Techniques to calibrate the downlink and uplink channels to account for differences in the frequency responses of the transmit and receive chains at an access point and a user terminal. In one embodiment, pilots are transmitted on the downlink and uplink channels and used to derive estimates of the downlink and uplink channel responses, respectively. Two sets of correction factors are then determined based on the estimates of the downlink and uplink channel responses. A calibrated downlink channel is formed by using a first set of correction factors for the downlink channel, and a calibrated uplink channel is formed by using a second set of correction factors for the uplink channel. The first and second sets of correction factors may be determined using a matrix-ratio computation or a minimum mean square error (MMSE) computation. The calibration may be performed in real-time based on over-the-air transmission.
摘要:
An access point in a multi-antenna system broadcasts data using spatial spreading to randomize an “effective” channel observed by each user terminal for each block of data symbols broadcast by the access point. At the access point, data is coded, interleaved, and modulated to obtain ND data symbol blocks to be broadcast in NM transmission spans, where ND≧1 and NM>1. The ND data symbol blocks are partitioned into NM data symbol subblocks, one subblock for each transmission span. A steering matrix is selected (e.g., in a deterministic or pseudo-random manner from among a set of L steering matrices) for each subblock. Each data symbol subblock is spatially processed with the steering matrix selected for that subblock to obtain transmit symbols, which are further processed and broadcast via NT transmit antennas and in one transmission span to user terminals within a broadcast coverage area.
摘要:
Techniques for decomposing matrices using Jacobi rotation are described. Multiple iterations of Jacobi rotation are performed on a first matrix of complex values with multiple Jacobi rotation matrices of complex values to zero out the off-diagonal elements in the first matrix. For each iteration, a submatrix may be formed based on the first matrix and decomposed to obtain eigenvectors for the submatrix, and a Jacobi rotation matrix may be formed with the eigenvectors and used to update the first matrix. A second matrix of complex values, which contains orthogonal vectors, is derived based on the Jacobi rotation matrices. For eigenvalue decomposition, a third matrix of eigenvalues may be derived based on the Jacobi rotation matrices. For singular value decomposition, a fourth matrix with left singular vectors and a matrix of singular values may be derived based on the Jacobi rotation matrices.
摘要:
For eigenvalue decomposition, a first set of at least one variable is derived based on a first matrix being decomposed and using Coordinate Rotational Digital Computer (CORDIC) computation. A second set of at least one variable is derived based on the first matrix and using a look-up table. A second matrix of eigenvectors of the first matrix is then derived based on the first and second variable sets. To derive the first variable set, CORDIC computation is performed on an element of the first matrix to determine the magnitude and phase of this element, and CORDIC computation is performed on the phase to determine the sine and cosine of this element. To derive the second variable set, intermediate quantities are derived based on the first matrix and used to access the look-up table.
摘要:
For eigenvalue decomposition, a first set of at least one variable is derived based on a first matrix being decomposed and using Coordinate Rotational Digital Computer (CORDIC) computation. A second set of at least one variable is derived based on the first matrix and using a look-up table. A second matrix of eigenvectors of the first matrix is then derived based on the first and second variable sets. To derive the first variable set, CORDIC computation is performed on an element of the first matrix to determine the magnitude and phase of this element, and CORDIC computation is performed on the phase to determine the sine and cosine of this element. To derive the second variable set, intermediate quantities are derived based on the first matrix and used to access the look-up table.
摘要:
A MIMO system supports multiple spatial multiplexing modes for improved performance and greater flexibility. These modes may include (1) a single-user steered mode that transmits multiple data streams on orthogonal spatial channels to a single receiver, (2) a single-user non-steered mode that transmits multiple data streams from multiple antennas to a single receiver without spatial processing at a transmitter, (3) a multi-user steered mode that transmits multiple data streams simultaneously to multiple receivers with spatial processing at a transmitter, and (4) a multi-user non-steered mode that transmits multiple data streams from multiple antennas (co-located or non co-located) without spatial processing at the transmitter(s) to receiver(s) having multiple antennas. For each set of user terminal(s) selected for data transmission on the downlink and/or uplink, a spatial multiplexing mode is selected for the user terminal set from among the multiple spatial multiplexing modes supported by the system.