摘要:
The present invention employs hierarchical modulation to simultaneously transmit information on different modulation layers using a carrier RF signal. Initially, first data to be transmitted is assigned to a first modulation layer and second data is assigned to a second modulation layer. In one embodiment of the present invention, the first and second data are assigned based on reliability criteria. The first and second modulation layers are hierarchical modulation layers of the carrier RF signal. Once assigned, the first data is transmitted using the first modulation layer of the carrier RF signal and the second data is transmitted using the second modulation layer of the carrier RF signal. In one embodiment of the present invention, information may be transmitted to one end user using one modulation layer, and information may be transmitted to a different end user using a different modulation layer.
摘要:
A wireless communication method and system using virtual MIMO (“V-MIMO”) are provided. Post processing signal to interference and noise ratios (“SINR”) for a plurality of signals corresponding to a plurality of mobile terminals arranged as a V-MIMO group are estimated. The one of the plurality of mobile terminals having the highest post processing SINR is selected. Wireless communication for the selected mobile terminal is scheduled. The signal corresponding to the selected mobile terminal is cancelled. Post processing signal to interference and noise ratios (“SINR”) for the signals corresponding to the remaining mobile terminals is re-estimated. The one of the remaining mobile terminals having the highest post processing SINR is selected. Wireless communication for the selected remaining mobile terminal is scheduled.
摘要:
Aspects of the present invention provide a multi-band hybrid Gigabit wireless communication system which is enabled by a number of different complementary access technologies to realize ubiquitous hyper-connectivity, true broadband, seamless operation and low power consumption. The system is capable of serving fixed, nomadic and mobile scenarios. The multi-band wireless system is a low power wireless system which operates in different frequency bands covering the spectrum from radio wave to optical wave by making use of both regulated bandwidths and unregulated bandwidths. Using low power distributed antenna and low power indoor and outdoor antennas enables the use of unregulated bandwidths as well as regulated bandwidths as the low power nature of the signals reduces the possibility of interference with the regulated use of the signals.
摘要:
Methods and systems are provided that enable an OFDM transmitter to be used for transmitting conventional OFDM or a form of transformed OFDM. A technique is provided for transforming a coded and modulated sequence of samples prior to an IFFT that enables the transformed sequence of samples to be transmitted using conventional OFDM or transformed OFDM. The selection of a transform function for transforming the coded and modulated sequence of samples may be based on optimizing the transform function for particular operating conditions between the transmitter and receiver. In some embodiments of the invention OFDM and time transformed OFDM are multiplexed in time and/or frequency in a transmission frame. In some embodiments of the invention a pilot pattern is provided in which the pilot are sent using OFDM and data is sent using OFDM and/or transformed OFDM.
摘要:
Methods and systems are provided that enable an OFDM transmitter to be used for transmitting conventional OFDM or a form of transformed OFDM. A technique is provided for transforming a coded and modulated sequence of samples prior to an IFFT that enables the transformed sequence of samples to be transmitted using conventional OFDM or transformed OFDM. The selection of a transform function for transforming the coded and modulated sequence of samples may be based on optimizing the transform function for particular operating conditions between the transmitter and receiver. In some embodiments of the invention OFDM and time transformed OFDM are multiplexed in time and/or frequency in a transmission frame. In some embodiments of the invention a pilot pattern is provided in which the pilot are sent using OFDM and data is sent using OFDM and/or transformed OFDM.
摘要:
The present application provides methods, devices and transmitters that mitigate increases in peak to average power ratio (PAPR) from transmission diversity in a single carrier frequency division multiple access (SC-FDMA) modulated uplink A PAPR preserving precode matrix hopping method that utilizes cyclic shift delays is provided, as well as a sub-band based transmit diversity scheme. The present application also provides methods, devices and transmitters that relax the scheduling restrictions associated with uplink scheduling in the LTE standard.
摘要:
Systems and methods for performing OFDM MIMO communications are provided. These include a frame structure; methods of combining various types of MIMO such as STTD and SM; sub-channel definitions; sub-FFT channel constructions; fast control channels; additional modulations; and group antenna transmit diversity; new incremental redundancy schemes.
摘要:
Physical layer structures and related access schemes for unsynchronized communication networks are provided. Access channel information, preferably including a common synchronization code associated with all transceiver stations in a communication network and a cell-specific synchronization code uniquely associated with one of the transceiver stations, is modulated onto at least one set of time-continuous signal components of a communication signal. In order to access the communication network, communication terminals search for the access channel information in one or more sets of time-continuous signal components and synchronization parameters are then determined based on a location of the access channel information in the sets of time-continuous signal components. Some embodiments of the invention provide for joint frame synchronization and coarse timing synchronization. In further embodiments, the communication signal also includes a scattered pilot channel onto which a portion of the access channel information, preferably the cell-specific synchronization code, is modulated. The pilot channels may then be re-used for initial access operations in addition to its conventional uses for such operations as channel estimation.
摘要:
Methods and systems are provided for use with wireless networks having once or more cell in which each cell includes a base station (BS), at least one relay station (RS) and at least one mobile station (MS). The at least one relay station can be used as an intermediate station for providing communication between the BS and MS. Methods are provided for an RS to initially access the network, access of the RS by MSs initially accessing the network, methods of allocating OFDM resources for communicating between the BS, RS and/or MS for example dividing transmission resources into uplink and downlink transmissions, and methods of inserting pilot symbols into transmission resources used by the RS. In some embodiments on the invention, the methods are consistent and/or can be used in conjunction with existing standards such as 802.16e.
摘要:
The present invention provides an effective way to create a virtual MIMO transmission system using mobile terminals that have only one transmit path and antenna. This is accomplished by assigning mobile terminals to a group and assigning certain shared resources and user-specific resources to those mobile terminals in the group. In a synchronized fashion, the mobile terminals will provide uplink transmission in concert, as if they were a single entity having multiple transmission paths and antennas. Preferably, the shared resources bear on how the data is transmitted, and the user-specific resources relate to pilot signals. The data transmitted may be encoded in any number of ways, and in one embodiment, the mobile terminals may relay their information to each other, such that uplink transmissions can incorporate STTD decoding or other space-time codes. The invention is applicable to virtually any multiple access technology, including OFDM, TDMA, and CDMA, preferably synchronous CDMA.