Abstract:
The invention relates to X-ray imaging. In order to improve flexibility, for example in relation with phase-contrast imaging, the X-ray imaging device (10) comprises an X-ray source arrangement for providing an X-ray beam (11). Further, it is provided at least one grating (13, 14) and a line detector (15) with a plurality of sensor lines, which sensor lines are each provided by a plurality of sensor elements, and which sensor lines are provided for detecting respective portions of the X-ray beam (11) passing the at least one grating during operation. The X-ray imaging device is arranged for moving the line detector (15) and an object (21) to be imaged relative to each other, such that in response to the portions of the X-ray beam a number of interference patterns are detectable at respective different relative positions of the line detector and the object for reconstructing an image of the object (21). The at least one grating (13, 14) comprises at least one first segment (161) and at least one second segment (162) arranged adjacent to each other in a direction perpendicular to the direction of the line detector (15). The X-ray imaging device is arranged for moving the line detector (15) and the at least one grating relative to each other between at least a first relative position and a second relative position, such that in the first relative position, a portion of the X-ray beam (11) during operation passes through the at least one first segment (161), while the at least one second segment (162) is arranged outside said portion of the X-ray beam (11), and that in the second relative position, said portion of the X-ray beam (11) during operation passes through the at least one second segment (162), while the at least one first segment (161) is arranged outside said portion of the X-ray beam (11).
Abstract:
The present invention is directed towards a photon counting radiation detector (10) comprising an array of pixels (13) comprising a plurality of detection pixels (131) for detecting imaging information. At least one pixel of the array of pixels (132) is shielded from receiving radiation. A dark current is determined from the shielded pixel (132) and is used to compensate for dark current in the other, non-shielded pixels (131). Embodiments are directed to integrating pixel shielding within an Anti Scatter Grid or in a mask.
Abstract:
A phase contrast imaging apparatus (MA) and related image processing method. The imaging apparatus includes a movable arm (AR) that carries a detector (D) and one or more interferometric gratings (G0,G1,G2). The imaging apparatus includes a rigidizer (RGD) to control the rigidity of at least the arm (AR) or a mounting (GM) for the gratings (G0,G1,G2). This allows controlling a drift of a Moiré pattern as detected in a sequence of readouts. A phase of the so controlled Moiré pattern can be used to calibrate the imaging apparatus by using the image processing method.
Abstract:
The invention relates to a method and a pulse processing circuit (100) for the processing of current pulses (CP) generated by incident photons (X) in a piece of converter material, for instance in a pixel (11) of a radiation detector. Deviations of the pulse shape from a reference are detected and used to identify pulse corruption due to pile-up effects at high count rates and/or charge sharing between neighboring pixels. The deviation detection may for instance be achieved by generating, with a pulse shaper (110), bipolar shaped pulses from the current pulse (CP) and/or two shaped pulses of different shapes which can be compared to each other.
Abstract:
The present invention relates to a method and apparatus for X-ray phase contrast imaging. The method comprises the following steps: from the measured phase gradient and overall attenuation information, an electron density is computed; the contribution pc of the Compton scattering to the overall attenuation is estimated from the electron density; the contribution pp of the photo-electric absorption to the overall attenuation is estimated from the overall attenuation and the contribution pc; the values pc and pp are used to reconstruct a Compton image and a photo-electric image; by linear combination of these two images, a monochromatic image at a desired energy is obtained.
Abstract:
An X-ray differential phase contrast imaging device (10) comprises an X-ray source (20) for generating an X-ray beam; a source grating (G0) for generating a coherent X-ray beam from a non-coherent X-ray source (20); a collimator (22) for splitting the coherent X-ray beam into a plurality of fan-shaped X-ray beams (28) for passing through an object (14); a phase grating (G1) for generating an interference pattern and an absorber grating (G2) for generating a Moiré pattern from the interference pattern arranged after the object (14); and a line detector (24) for detecting the Moiré pattern generated by the phase grating (G1) and the absorber grating (G2) from the fan-shaped X-ray beams (28) passing through the object (14). The X-ray source (20), source grating (G0), collimator (22), phase grating (G1), absorber grating (G2) and line detector (24) are fixed to a common gantry (12) and are movable with respect to the object (14), such that a number of interference pattern from different positions of the gantry are detectable for reconstructing a differential phase image of the object (14). At least one grating (G0, G1, G2) comprises, in an alternating manner, groups (36) of grating lines (34) and transparent areas (38). At least one grating (G0, G1, G2) is movable with respect to the gantry (12), such that in a first position of the grating (G1, G2) the fan-shaped X-ray beams (28) pass through the grating lines (34), and in a second position of the grating (G1, G2), the fan-shaped X-ray beams (28) pass through the transparent areas (38).
Abstract:
An imaging system (100) includes a radiation source (108) that emits radiation that traverses an examination region and imageable drug eluting beads in tissue of interest located therein, a spectral detector array (110) detects radiation traversing the examination region and generates a signal indicative thereof, spectral processing circuitry (117) that spectrally resolves the signal based on a plurality of thresholds (122), and a reconstructor (128) that generates spectral volumetric image data corresponding the imageable drug eluting beads based on the spectrally resolved signal.
Abstract:
In generating phase image data 38 first x-ray image data 28a comprising first pixel-wise measurement signal values 30a and second x-ray image data 28b comprising second pixel-wise measurement signal values 30b are received. The first x-ray image data 28a was obtained in a first measurement mode and the second x-ray image data 28b was obtained in a second measurement mode different from the first measurement mode. Phase image data 38 comprising pixel-wise phase values 34 from the first and second x-ray image data 28a, 28b is determined by determining a phase value 34 at a pixel 31 from a first measurement signal value 30a obtained in a first measurement mode at the pixel 31 and a second measurement signal value 30b obtained in a second measurement mode at the pixel 31.
Abstract:
An exemplary mounting structure can be provided for interferometric imaging and an interferometric imaging apparatus comprising same. The mounting structure comprises at least one curved surface for receiving an interferometric grating to rest thereon. The surface can be provided having a plurality of apertures, whereas that the grating when so received, covers at least one of the apertures.
Abstract:
The present invention relates to a device for phase stepping in phase contrast image acquisition, the device (1) comprising: a mobile grating (10); a guiding element (11); a restoring element (12); and a locking element (13); wherein the guiding element (11) is configured to guide the mobile grating (10) between a first position (2) and a second position (3); wherein the restoring element (12) is configured to apply a force to the mobile grating (10); wherein the force is directed from the first position (2) to the second position (3); and wherein the locking element (13) is configured to releasably lock the mobile grating (10) in the first position (2). In an example, during the motion of the mobile grating (10) back to equilibrium, a decoder (11a) for the position of the mobile grating (10) along the guiding element (11) may trigger at least four measurement frames over a period of at least 2*Pi. The invention provides a device (1) for phase stepping in phase contrast image acquisition which provides a fast image acquisition without a significant delay and which reduces positional inaccuracies and which avoids back-lash.