Abstract:
In a method and apparatus for converting optical wavelength division multiplexed channels to wireless channels, the information carrying optical carriers are first de-multiplexed and each optical carrier is then extracted from the data using an optical channelizing technique. The optical frequency of each of the extracted optical carriers is then shifted by an amount equal to the desired wireless carrier frequencies in the broadband wireless channels. Optical heterodyning of the frequency-shifted extracted lightwave carriers with the original data-containing optical signals, which are mutually in phase coherence, in a photodetector results in a set of wireless carriers each modulated with the data carried by the corresponding optical channel.
Abstract:
In a method and apparatus for converting optical wavelength division multiplexed channels to wireless channels, the information carrying optical carriers are first de-multiplexed and each optical carrier is then extracted from the data using an optical channelizing technique. The optical frequency of each of the extracted optical carriers is then shifted by an amount equal to the desired wireless carrier frequencies in the broadband wireless channels. Optical heterodyning of the frequency-shifted extracted lightwave carriers with the original data-containing optical signals, which are mutually in phase coherence, in a photodetector results in a set of wireless carriers each modulated with the data carried by the corresponding optical channel.
Abstract:
A conformal retro-modulator optical apparatus. The apparatus includes an array of multiple quantum well devices disposed in a thin array. A plastic support element is bonded to the thin array, the plastic support element having a thickness greater that of the thin array. The plastic support element is preferably plastic at elevated temperatures above room temperature, thereby allowing the plastic support element and the thin array of multiple well device disposed therein to conform to a predetermined shape, yet being rigid at room temperature.
Abstract:
A method for transferring of individual devices or circuit elements, fabricated on a semiconducting substrate, to a new substrate and placing said devices and elements in predetermined locations on the new substrate. The method comprises shaping the devices and circuits as truncated cones, lifting them off the original semiconducting substrates and depositing them en masse onto the new substrate, followed by their placing into receptors on the new substrate. The new substrate has preliminarily made receptors in a form of a truncated cone and the devices and circuits fill these receptors. Both the receptors and the devices and circuits have metallization contacts enabling to establish electrical contact between them. A method for real-time monitoring and verification of correctness of placement of the devices and circuits into the receptors by applying voltage pulse waveforms and measuring the resulting current pulse.
Abstract:
A phase shifter comprises a coarse phase tuning arrangement and a fine phase tuning arrangement. The coarse phase tuning arrangement provides a discrete number of phase shifts. The fine phase tuning arrangement includes a RLC network, having a resistor, an inductor and a capacitor. The fine phase tuning arrangement also comprises an optical arrangement for varying the resistance value of the resistor. This phase shifter is able to obtain broadband, continuous 360° phase shifting also at Gigahertz frequencies. It also allows close to linear phase shift versus frequency resulting in true time delay capability, very low insertion loss and high value of maximum phase adjust.
Abstract:
A method for transferring of individual devices or circuit elements, fabricated on a semiconducting substrate, to a new substrate and placing said devices and elements in predetermined locations on the new substrate. The method comprises shaping the devices and circuits as truncated cones, lifting them off the original semiconducting substrates and depositing them en masse onto the new substrate, followed by their placing into receptors on the new substrate. The new substrate has preliminarily made receptors in a form of a truncated cone and the devices and circuits fill these receptors. Both the receptors and the devices and circuits have metallization contacts enabling to establish electrical contact between them. A method for real-time monitoring and verification of correctness of placement of the devices and circuits into the receptors by applying voltage pulse waveforms and measuring the resulting current pulse.
Abstract:
A method for transferring layers containing semiconductor devices and/or circuits to substrates other than those on which these semiconductor devices and/or circuits have been originally fabricated. The method comprises fabricating the semiconductor devices and/or circuits, coating them with a protective layer of photoresist followed by coating with a layer of wax. A special perforated structure is then also wax coated and the waxed surface of the structure is brought into a contact with the waxed surface of photoresist. The original seed substrate is removed and the exposed surface is then coated with adhesive followed by dissolving wax through the openings in the perforated structure and attaching the layer with semiconductor devices and/or circuits to another permanent substrate. As an alternative, a disk-shaped water-soluble structure can be used instead of the perforated structure.
Abstract:
A photoconductive substrate is provided to voltage modulate a liquid crystal layer in response to input light. The substrate is partitioned into electrically isolated pixels to eliminate lateral spread of charge carriers therein, and increase the dynamic range of the liquid crystal light valve while preserving resolution. The substrate is partitioned by forming an interconnecting network of deep trenches in a surface thereof, and filling the trenches with an insulating material such as silicon dioxide. The opposite surface of the substrate is etched away to expose the silicon dioxide in the trenches, thereby providing the substrate with partitions which extend completely therethrough between the opposite surfaces.