Abstract:
Apparatus and associated methods relate to a low-noise wideband active phase shifter. The low-noise wideband active phase shifter includes first and second transconductance cells, a fixed LC series network and a tunable LC series network configured to form an all-pass lattice network. The first and second transconductance cells, each include a transistor, a feedback network, and a transistor biasing network. The transistor has an input terminal and an output terminal. The negative feedback network electrically couples the input and output terminals of the transistor. The biasing network provides input and output biasing of the transistor. The fixed LC series network connects between the first and the second transconductance cells. The tunable LC series network connects between the first and the second transconductance cells.
Abstract:
A transconductance amplifier is provided with: a cross-coupled differential pair (31) having one set of differential pair transistors in which signals whose polarities are opposite to each other are inputted to gates thereof, drains of one of the differential pair transistors being connected to drains of another one of the differential pair transistors, and a control circuit (32) comprised of logical circuits, for outputting a binary signal to the common source of each of the differential pair transistors on the basis of an output-level control signal and a polarity control signal which are inputted thereto.
Abstract:
An electronic system that includes a digitally selectable phase shifter circuit and an insertion loss fine adjustment circuit such that the system as a whole exhibits little or no change in insertion loss when changing phase state, and/or a digitally selectable attenuator circuit and a phase fine adjustment circuit such that the system as a whole exhibits little or no effect on phase when changing attenuation state. Included are methods for selecting adjustment control words for such circuits.
Abstract:
Phase interpolators are provided where an adjustment current is added to currents from a plurality of switchable current sources, for example to reduce an integrated nonlinearity.
Abstract:
Contrary to phase shifters which require complimentary polarity control voltages, a phase shifter may be driven with a single polarity control voltage. The phase shifter comprises an input node in communication with both a high pass network and a low pass network which are both in communication with an output node, where the phase shifter further comprises a first single pole double throw switch and a second single pole double throw switch configured to selectively pass an RF signal from the input node to the output node by way of one of said high pass network and said low pass network. Furthermore, the first and second single pole double throw switches are configured to select between the high pass network and the low pass network based on a single control signal having a voltage greater than or less than a reference voltage.
Abstract:
A reconfigurable filter includes a splitter for providing an input signal on a plurality of paths. A first path includes a first filter section that can be configured as either a tunable band pass filter with a shunt-connected fixed inductor or a tunable notch filter with a fixed inductor in parallel with a tunable varactor, either of which can be responsive to a control signal. A second path is an all pass section that provides an unfiltered signal. A combiner is provided for combining the first filtered signal with the unfiltered signal for producing a composite signal. The unfiltered signal can have its gain or phase modified in either or both the splitter or the combiner.
Abstract:
A method for differential buffer phase correction comprises generating a pair of differential signals from a local oscillator, applying one of the signals to a first inverter and the other signal to a second inverter of a buffer through a differential pair of lines, applying a first positive feedback signal to the first inverter through a first feedback capacitor, wherein the first positive feedback signal is generated from an output of the second inverter and applying a second positive feedback signal to the second inverter through a second feedback capacitor, wherein the second positive feedback signal is generated from an output of the first inverter.
Abstract:
Contrary to phase shifters which require complimentary polarity control voltages, a phase shifter may be driven with a single polarity control voltage. The phase shifter comprises an input node in communication with both a high pass network and a low pass network which are both in communication with an output node, where the phase shifter further comprises a first single pole double throw switch and a second single pole double throw switch configured to selectively pass an RF signal from the input node to the output node by way of one of said high pass network and said low pass network. Furthermore, the first and second single pole double throw switches are configured to select between the high pass network and the low pass network based on a single control signal having a voltage greater than or less than a reference voltage.
Abstract:
An integrated circuit for phase shifting a radio frequency signal, wherein the integrated circuit comprises at least one phase shifter comprising: at least one input for receiving a radio frequency signal, a voltage variable element; and a plurality of active devices operably coupled to the voltage variable element and arranged to receive a variable control voltage. The plurality of active devices comprise at least two active devices coupled in a common base arrangement and arranged to receive the radio frequency signal with the voltage variable element coupling the emitter contacts or source contacts of the at least two active devices, such that a variable control voltage applied to the voltage variable element adjusts a phase of the radio frequency signal.
Abstract:
Contrary to phase shifters which require complimentary polarity control voltages, a phase shifter may be driven with a single polarity control voltage. The phase shifter comprises an input node in communication with both a high pass network and a low pass network which are both in communication with an output node, where the phase shifter further comprises a first single pole double throw switch and a second single pole double throw switch configured to selectively pass an RF signal from the input node to the output node by way of one of said high pass network and said low pass network. Furthermore, the first and second single pole double throw switches are configured to select between the high pass network and the low pass network based on a single control signal having a voltage greater than or less than a reference voltage.