Abstract:
Thermal management and communication is described in the context of memory modules that contain several memory devices. In one example, the invention includes determining a temperature of a first memory device, the first memory device containing a plurality of memory cells, determining a temperature of a second memory device after determining the temperature of the first memory device, the second memory device containing a plurality of memory cells, and generating an alarm based on an evaluation of the first and the second temperatures. In another example, the invention includes detecting a thermal event on a memory device of a memory module that contains a plurality of memory devices, detecting the state of an event bus of the memory module, and sending an alert on the event bus if the event bus is in an unoccupied state.
Abstract:
An output driver circuit within an electronic device to provide a configurable driver circuit. When placed in a first mode of operation, the driver circuit drives an output signal. When placed in a second mode of operation, the driver circuit provides impedance matching to prevent signal reflection.
Abstract:
Embodiments of the invention are generally directed to systems, methods, and apparatuses for a common memory device for variable device width and scalable pre-fetch and page size. In some embodiments, a common memory device (such as a DRAM) can operate in any of a number of modes including, for example, a ×4 mode, a ×8 mode, and a ×16 mode. The page size provided by the DRAM may vary depending on the mode of the DRAM. In some embodiments, the amount of data pre-fetched by the DRAM also varies depending on the mode of the DRAM.
Abstract:
Embodiments of the invention are generally directed to systems, methods, and apparatuses for a common memory device for variable device width and scalable pre-fetch and page size. In some embodiments, a common memory device (such as a DRAM) can operate in any of a number of modes including, for example, a ×4 mode, a ×8 mode, and a ×16 mode. The page size provided by the DRAM may vary depending on the mode of the DRAM. In some embodiments, the amount of data pre-fetched by the DRAM also varies depending on the mode of the DRAM.
Abstract:
Embodiments of the invention are generally directed to systems, methods, and apparatuses to save dynamic random access memory (DRAM) self-refresh power. In some embodiments, the refresh frequency of a DRAM is reduced and errors are allowed to occur. In error check mode, the DRAM stores data and corresponding error check bits. The error check bits may be used to scrub the memory and fix the errors.
Abstract:
A high speed DRAM cache architecture. One disclosed embodiment includes a multiplexed bus interface to interface with a multiplexed bus. A cache control circuit drives a row address portion of an address on the multiplexed bus interface and a command to open a memory page containing data for a plurality of ways. The cache control circuit subsequently drives a column address including at least a way indicator to the multiplexed bus interface.
Abstract:
A method, apparatus, and system to enable a partial refresh scheme for DRAM which includes specifying at least a refresh start value, or a refresh start value and a refresh end value, to reduce the number of rows that must be refreshed during a refresh cycle, thus reducing the amount of power consumed during refresh.
Abstract:
A high speed DRAM cache architecture. One disclosed embodiment includes a multiplexed bus interface to interface with a multiplexed bus. A cache control circuit drives a row address portion of an address on the multiplexed bus interface and a command to open a memory page containing data for a plurality of ways. The cache control circuit subsequently drives a column address including at least a way indicator to the multiplexed bus interface.
Abstract:
A memory component with built-in self test includes a memory array. An input/output interface is coupled to the memory array and has a loopback. A controller is provided to transmit memory array test data to the memory array to store the memory array test data, and to read the memory array test data from the memory array. A compare register is also provided to compare the memory array test data transmitted to the memory array with the memory array test data read from the memory array.