Abstract:
A memory controller issues a targeted refresh command. A specific row of a memory device can be the target of repeated accesses. When the row is accessed repeatedly within a time threshold (also referred to as “hammered” or a “row hammer event”), physically adjacent row (a “victim” row) may experience data corruption. The memory controller receives an indication of a row hammer event, identifies the row associated with the row hammer event, and sends one or more commands to the memory device to cause the memory device to perform a targeted refresh that will refresh the victim row.
Abstract:
Detection logic of a memory subsystem obtains a threshold for a memory device that indicates a number of accesses within a time window that causes risk of data corruption on a physically adjacent row. The detection logic obtains the threshold from a register that stores configuration information for the memory device, and can be a register on the memory device itself and/or can be an entry of a configuration storage device of a memory module to which the memory device belongs. The detection logic determines whether a number of accesses to it row of the memory device exceeds the threshold. In response to detecting the number of accesses exceeds the threshold, the detection logic can generate a trigger to cause the memory device to perform a refresh targeted to a physically adjacent victim row.
Abstract:
A method, apparatus, and system to enable a partial refresh scheme for DRAM which includes specifying at least a refresh start value, or a refresh start value and a refresh end value, to reduce the number of rows that must be refreshed during a refresh cycle, thus reducing the amount of power consumed during refresh.
Abstract:
The temperature for multiple devices of a memory module are determined. In one example a memory module includes a printed circuit board, a plurality of memory chips on the printed circuit board, each chip containing a plurality of memory cells and a thermal sensor, and a multiplexer on the printed circuit board, independent of the memory chips, coupled to each of the thermal sensors. A current source is coupled to the multiplexer to provide a current to each one of the thermal sensors, and a voltage detector is coupled to the multiplexer to detect a voltage from each of the thermal sensors when a current is applied. A temperature circuit is coupled to the voltage detector to determine a temperature for each memory chip based on the detected voltage.
Abstract:
Memory device having banks of memory cells organized into two groups of banks that share control circuitry and a data buffer to provide an interface to a memory bus, but which are independently operable enough to support unrelated transactions with each group, and can be used to stagger read operations with shortened burst transfers so as to minimize dead time on a memory bus.
Abstract:
The present invention provides a system and method for providing reliable transmission in a buffered memory system. The system includes memory devices, a memory controller, data buffers, an address/command buffer, and a clock circuit. The memory controller sends data, address information, status information and command information, to the memory devices and receives data from the memory devices. The buffers interconnect the memory devices and the memory controller. The clock circuit is embedded in the addr/cmd buffer. The clock circuit takes an input clock and outputs an output clock to the data buffers and/or the memory devices to control clock-skew to the data buffers and/or the memory devices.
Abstract:
Dynamic operations for operations for a stacked memory with interface providing offset interconnects. An embodiment of memory device includes a system element and a memory stack coupled with the system element, the memory stack including one or more memory die layers. Each memory die layer includes first face and a second face, the second face of each memory die layer including an interface for coupling data interface pins of the memory die layer with data interface pins of a first face of a coupled element. The interface of each memory die layer includes connections that provide an offset between each of the data interface pins of the memory die layer and a corresponding data interface pin of the data interface pins of the coupled element.
Abstract:
In some embodiments, data may be transferred from a first memory agent to a second memory agent in a first format having a first width, and at least a critical portion of the data maybe transferred from the second memory agent back to the first memory agent in a second format having a second width, where the critical portion is included in a first frame. The critical portion may include a cacheline mapped over a memory device rank. Other embodiments are described and claimed.
Abstract:
In some embodiments, a chip includes at least four groups of memory banks and at least four groups of output conductors wherein each group of output conductors corresponds to a different one of the groups of memory banks. The chip also includes circuitry to perform a read operation by providing read data from at least one of the banks of each of the groups of memory banks to its corresponding group of output conductors. Other embodiments are described.
Abstract:
Method and apparatus for use with buffered memory modules are included among the embodiments. In exemplary systems, a serial presence detect function is included within a memory module buffer instead of being provided by a separate EEPROM device mounted on the memory module. Various embodiments thus can provide cost savings, chip placement and signal routing simplification, and can in some circumstances save pins on the module. Other embodiments are described and claimed.