摘要:
A dense guide image or signal is used to inform the reconstruction of a target image from a sparse set of target points. The guide image and the set of target points are assumed to be derived from a same real world subject or scene. Potential discontinuities (e.g., tears, edges, gaps, etc.) are first detected in the guide image. The potential discontinuities may be borders of Voronoi regions, perhaps computed using a distance in data space (e.g., color space). The discontinuities and sparse set of points are used to reconstruct the target image. Specifically, pixels of the target image may be interpolated smoothly between neighboring target points, but where neighboring target points are separated by a discontinuity, the interpolation may jump abruptly (e.g., by adjusting or influencing relaxation) at the discontinuity. The target points may be used to select only a subset of the discontinuities to be used during reconstruction.
摘要:
Systems and methods of fabricating silicon-based thin film transistors (TFTs) on flexible substrates. The systems and methods incorporate and combine deposition processes such as chemical vapor deposition and plasma-enhance vapor deposition, printing, coating, and other deposition processes, with laser annealing, etching techniques, and laser doping, all performed at low temperatures such that the precision, resolution, and registration is achieved to produce a high performing transistor. Such TFTs can be used in applications such as displays, packaging, labeling, and the like.
摘要:
Techniques and tools for mesh processing are described. For example, a multi-chart geometry image represents arbitrary surfaces on object models. The multi-chart geometry image is created by resampling a surface onto a regular 2D grid, using a flexible atlas construction to map the surface piecewise onto charts of arbitrary shape. This added flexibility reduces parameterization distortion and thus provides greater geometric fidelity, particularly for shapes with long extremities, high genus, or disconnected components. As another example, zippering creates a watertight surface on reconstructed triangle meshes. The zippering unifies discrete paths of samples along chart boundaries to form the watertight mesh.
摘要:
A lift-assisted manhole cover assembly with a flush surface and external pivot shaft. The cover includes a mounting tab that extends beyond the general periphery of the cover. The mounting tab may be connected to a shaft that is threadedly engaged with the frame. A spring may be mounted between the frame and the mounting tab, for example, in a sleeve, to provide a mechanical assist in lifting the cover. The sleeve may be disposed outside the manhole opening where it does not block access to the manhole opening.
摘要:
A Schottky barrier MOSFET (SB-MOS) device and a method of manufacturing having a silicon-on-nothing (SON) architecture in a channel region is provided. More specifically, metal source/drain SB-MOS devices are provided in combination with a channel structure comprising a semiconductor channel region such as silicon isolated from a bulk substrate by an SON dielectric layer. In one embodiment, the SON dielectric layer has a triple stack structure comprising oxide on nitride on oxide, which is in contact with the underlying semiconductor substrate.
摘要:
A CMOS device and method of manufacture is provided for producing an integrated circuit that is not susceptible to various soft errors such as single-event upsets, multi-bit upsets or single-event latchup. The CMOS device and method utilizes a new and novel well architecture in conjunction with metal source/drain electrodes to eliminate soft errors. In one embodiment, the CMOS device uses a first metal source/drain material for the NMOS device and a second metal source/drain material for the PMOS device. The CMOS device further uses a multi-layered well-structure with a shallow N-well and a buried P-well for the PMOS device and a shallow P-well and a buried N-well for the NMOS device.
摘要:
The invention is directed to a device for regulating the flow of electric current with high dielectric constant gate insulating layer and a source and/or drain forming a Schottky contact or Schottky-like region with a substrate and its fabrication method. In one aspect, the gate insulating layer has a dielectric constant greater than the dielectric constant of silicon. In another aspect, the current regulating device may be a MOSFET device, optionally a planar P-type or N-type MOSFET, having any orientation. In another aspect, the source and/or drain may consist partially or fully of a silicide.
摘要:
Techniques and tools for mesh processing are described. For example, a multi-chart geometry image represents arbitrary surfaces on object models. The multi-chart geometry image is created by resampling a surface onto a regular 2D grid, using a flexible atlas construction to map the surface piecewise onto charts of arbitrary shape. This added flexibility reduces parameterization distortion and thus provides greater geometric fidelity, particularly for shapes with long extremities, high genus, or disconnected components. As another example, zippering creates a watertight surface on reconstructed triangle meshes. The zippering unifies discrete paths of samples along chart boundaries to form the watertight mesh.
摘要:
A device for regulating a flow of electric current and its manufacturing method are provided. The device includes metal-insulator-semiconductor source-drain contacts forming Schottky barrier or Schottky-like junctions to the semiconductor substrate. The device includes an interfacial layer between the semiconductor substrate and a metal source and/or drain electrode, thereby dynamically adjusting a Schottky barrier height by applying different bias conditions. The dynamic Schottky barrier modulation provides increased electric current for low drain bias conditions, reducing the sub-linear turn-on characteristic of Schottky barrier MOSFET devices and improving device performance.
摘要:
Systems and methods are provided for optimizing the geometric stretch of a parametrization scheme. Given an arbitrary mesh, the systems and methods construct a progressive mesh (PM) such that all meshes in the PM sequence share a common texture parametrization. The systems and methods minimize geometric stretch, i.e., small texture distances mapped onto large surface distances, to balance sampling rates over all locations and directions on the surface. The systems and methods also minimize texture deviation, i.e., “slippage” error based on parametric correspondence, to obtain accurate textured mesh approximations. The technique(s) begin by partitioning the mesh into charts using planarity and compactness heuristics. Then, the technique(s) proceed by creating a stretch-minimizing parametrization within each chart, and by resizing the charts based on the resulting stretch. Then, the technique(s) simplify the mesh while respecting the chart boundaries. Next, the parametrization is re-optimized to reduce both stretch and deviation over the whole PM sequence. The charts may then be packed into a texture atlas for improved texture mapping in connection with a parametrization scheme.