Abstract:
A method of transmitting, by a transmitter, information in a wireless communication system, the method includes generating first and second symbols; generating first and second transmit vectors on the basis of an Alamouti code from the first and second symbols; and transmitting the first transmit vector through a first antenna and transmitting the second transmit vector through a second antenna. The first transmit vector consists of a first transmit symbol and a second transmit symbol. The second transmit vector consists of a third transmit symbol and a fourth transmit symbol. The first, second, third, and fourth transmit symbols are transmitted based on first and second resource indexes. The first symbol is a first modulation symbol for first information, and the second symbol is a second modulation symbol for second information.
Abstract:
A symbol mapping method for repetition coding is disclosed. The symbol mapping method comprises performing repetition coding on codeword to output repeated codeword symbols, and mapping the repeated codeword symbols with subcarriers located in different localized resource blocks. According to the embodiments of the present invention, it is possible to obtain maximum reliability in a receiving side by mapping codeword bits with subcarriers to reduce the number of bits having low reliability when a transmitting side uses repetition coding. Also, it is possible to improve decoding throughput and obtain channel diversity.
Abstract:
Method for generating reference signal sequence using grouping is explained. In this method, base sequences are grouped such that each group contains at least one base sequence of each length, so UE(s) can use various length sequences as a reference signal. And in this method, inter cell interference caused by using various length sequence as a reference signal sequence can be minimized by grouping sequences having the high cross correlation relation.
Abstract:
A method and an apparatus of transmitting information in a wireless communication system are provided. The method includes transmitting information based on a first resource index through a first antennae and transmitting the information based on a second resource index through a second antennae.
Abstract:
A method of transmitting, by a transmitter, information in a wireless communication system, the method includes generating first and second symbols; generating first and second transmit vectors on the basis of an Alamouti code from the first and second symbols; and transmitting the first transmit vector through a first antenna and transmitting the second transmit vector through a second antenna. The first transmit vector consists of a first transmit symbol and a second transmit symbol. The second transmit vector consists of a third transmit symbol and a fourth transmit symbol. The first, second, third, and fourth transmit symbols are transmitted based on first and second resource indexes. The first symbol is a first modulation symbol for first information, and the second symbol is a second modulation symbol for second information.
Abstract:
A method and an apparatus of transmitting information in a wireless communication system are provided. The method includes transmitting information based on a first resource index through a first antennae and transmitting the information based on a second resource index through a second antennae.
Abstract:
A method and a base station for receiving uplink control signals in a wireless communication system are described. The base station receives a first uplink control channel in a mixed resource block from a first user equipment. The mixed resource block includes a plurality of subcarriers. The base station receives a second uplink control channel in the mixed resource block from a second user equipment. The first uplink control channel is identified by a first cyclic shift value. The second uplink control channel is identified by a second cyclic shift value that is different from the first cyclic shift value. The first uplink control channel carries a Hybrid Automatic Repeat Request (HARQ) acknowledgement/negative acknowledgement (ACK/NACK) of the first user equipment. The second uplink control channel carries a channel quality indicator (CQI) for the second user equipment and a HARQ ACK/NACK of the second user equipment.
Abstract:
There is provided a method for allocating pilots to a sub-frame. The sub-frame includes a plurality of blocks in time domain. The method includes allocating a data demodulation (DM) pilot used for demodulating data to two blocks spaced not contiguous with each other, and allocating a channel quality (CQ) pilot. System capacity can be increased, and degradation of performance incurred by a channel estimation error can be minimized.
Abstract:
This is provided a method for allocating pilots to a sub-frame. The sub-frame includes a plurality of blocks in time domain. The method includes allocating a data demodulation (DM) pilot used for demodulating data to two blocks spaced not contiguous with each other, and allocating a channel quality (CQ) pilot. System capacity can be increased, and degradation of performance incurred by a channel estimation error can be minimized.
Abstract:
A method of allocating control information in a wireless communication system is provided. The method includes: allocating essential control information of a first system to a first sub-frame in a frame including a plurality of sub-frames each of which comprises a plurality of orthogonal frequency-division multiplexing (OFDM) symbols; and allocating essential control information of a second system to an nth sub-frame in a fixed position from the first sub-frame (where n is an integer satisfying n>1). Accordingly, in a frame supporting heterogeneous systems, essential control information can be fixedly allocated to a specific position while maintaining the number of system switching points, at which switching occurs between the systems, to one even if a radio resource allocation amount changes between the systems, and thus the essential control information that must be received by all user equipments can be effectively provided without the increase of overhead.