Abstract:
A method of allocating control information in a wireless communication system is provided. The method includes: allocating essential control information of a first system to a first sub-frame in a frame including a plurality of sub-frames each of which comprises a plurality of orthogonal frequency-division multiplexing (OFDM) symbols; and allocating essential control information of a second system to an nth sub-frame in a fixed position from the first sub-frame (where n is an integer satisfying n>1). Accordingly, in a frame supporting heterogeneous systems, essential control information can be fixedly allocated to a specific position while maintaining the number of system switching points, at which switching occurs between the systems, to one even if a radio resource allocation amount changes between the systems, and thus the essential control information that must be received by all user equipments can be effectively provided without the increase of overhead.
Abstract:
A method of transmitting, by a user equipment, control information in a communication system. The method according to one embodiment includes multiplying transmission information corresponding to the control information by a frequency direction sequence, of which length corresponds to a number of subcarriers in a resource block, to generate a first output signal; multiplying the first output signal by a time direction sequence, of which length corresponds to a number of symbols used for transmission of the control information in a transmission unit, to generate a second output signal; and transmitting the second output signal in the transmission unit.
Abstract:
A method and apparatus for requesting uplink resources in a wireless communication system is provided. A user equipment determines whether a scheduling request for requesting uplink resources is triggered. If the scheduling request is triggered, the user equipment transmits a first set of frequency domain sequences and a second set of frequency domain sequences in a subframe.
Abstract:
A method of mapping a physical resource to a logical resource in a wireless communication system is described. The method includes dividing a physical frequency band into at least one frequency partition. Each frequency partition is divided into a localized region and a distributed region in a frequency domain. The method further includes mapping the at least one frequency partition into at least one logical resource unit. The localized region is directly mapped into the logical resource unit and the distributed region is mapped into the logical resource unit after rearranging subcarriers within the distributed region.
Abstract:
A wireless communication system using pilot subcarrier allocation and a method of allocating the pilot subcarriers for use in downlink and uplink communication in a multiple-input multiple-output (MIMO) antenna system using orthogonal frequency division multiplexing (OFDM) modulation are disclosed. The method includes providing a frame structure comprising OFDM symbols in time domain and subcarriers in frequency domain and alternately allocating first pilot subcarriers for a first antenna and second pilot subcarriers for a second antenna in the time and frequency domains, wherein each of the alternating first pilot subcarriers and the second pilot subcarriers is separated by a multiple of 9 subcarriers in the frequency domain and further allocated in two contiguous OFDM symbols.
Abstract:
A method of performing cell search includes receiving a primary synchronization signal (PSS) comprising a primary synchronization code (PSC) and receiving a secondary synchronization signal (SSS) comprising a first secondary synchronization code (SSC) and a second SSC, wherein the SSS includes a first SSS and a second SSS, the first SSC and the second SSC are arranged in that order in the first SSS, and the second SSC and the first SSC are arranged in that order in the second SSS. Detection performance on synchronization signals can be improved, and cell search can be performed more reliably.
Abstract:
A method of transmitting control signals in a wireless communication system includes multiplexing a first control signal with a second control signal in a slot, the slot comprising a plurality of orthogonal frequency division multiplexing (OFDM) symbols in time domain, the plurality of OFDM symbols being divided into a plurality of data OFDM symbols and a plurality of reference signal (RS) OFDM symbols, wherein the first control signal is mapped to the plurality of data OFDM symbols after the first control signal is spread by a base sequence in the frequency domain, the RS is mapped to the plurality of RS OFDM symbols, the second control signal is mapped to at least one of the plurality of RS OFDM symbols, and transmitting the first control signal and the second control signal in the slot.
Abstract:
A wireless communication system using pilot subcarrier allocation and a method of allocating the pilot subcarriers for use in downlink and uplink communication in a multiple-input multiple-output (MIMO) antenna system using orthogonal frequency division multiplexing (OFDM) modulation are disclosed. The method includes providing a frame structure comprising OFDM symbols in time domain and subcarriers in frequency domain and alternately allocating first pilot subcarriers for a first antenna and second pilot subcarriers for a second antenna in the time and frequency domains, wherein each of the alternating first pilot subcarriers and the second pilot subcarriers is separated by a multiple of 9 subcarriers in the frequency domain and further allocated in two contiguous OFDM symbols.
Abstract:
A method for transmitting a random access preamble to a base station includes generating the random access preamble from a Zadoff-Chu (ZC) sequence, wherein the random access preamble is defined by cyclic shift (Cv) of the ZC sequence; and transmitting the random access preamble to the base station.
Abstract:
A method of transmitting control signals in a wireless communication system includes multiplexing a first control signal with a second control signal in a slot, the slot comprising a plurality of orthogonal frequency division multiplexing (OFDM) symbols in time domain, the plurality of OFDM symbols being divided into a plurality of data OFDM symbols and a plurality of reference signal (RS) OFDM symbols, wherein the first control signal is mapped to the plurality of data OFDM symbols after the first control signal is spread by a base sequence in the frequency domain, the RS is mapped to the plurality of RS OFDM symbols, the second control signal is mapped to at least one of the plurality of RS OFDM symbols, and transmitting the first control signal and the second control signal in the slot.