Abstract:
Methods, systems, and devices for adjustable column address scramble using fuses are described. A testing device may detect a first error in a first column plane of a memory array and a second error in a second column plane of the memory array. The testing device may identify a first column address of the first column plane associated with the first error and a second column address of the second column plane based on detecting the first error and the second error. The testing device may determine, for the first column plane, a configuration for scrambling column addresses of the first column plane to different column addresses of the first column plane. In some cases, the testing device may perform a fuse blow of a fuse associated with the first column plane to implement the determined configuration.
Abstract:
Apparatuses and methods including memory commands for semiconductor memories are described. A controller provides a memory system with memory commands to access memory. The commands are decoded to provide internal signals and commands for performing operations, such as operations to access the memory array. The memory commands provided for accessing memory may include timing command and access commands. Examples of access commands include a read command and a write command. Timing commands may be used to control the timing of various operations, for example, for a corresponding access command. The timing commands may include opcodes that set various modes of operation during an associated access operation for an access command.
Abstract:
Apparatuses and methods including memory commands for semiconductor memories are described. A controller provides a memory system with memory commands to access memory. The commands are decoded to provide internal signals and commands for performing operations, such as operations to access the memory array. The memory commands provided for accessing memory may include timing command and access commands. Examples of access commands include a read command and a write command. Timing commands may be used to control the timing of various operations, for example, for a corresponding access command. The timing commands may include opcodes that set various modes of operation during an associated access operation for an access command.
Abstract:
Apparatuses and methods for identifying memory devices of a semiconductor device sharing an external resistance are disclosed. A memory device of a semiconductor device may be set in an identification mode and provide an identification request to other memory devices that are coupled to a common communication channel. The memory devices that are coupled to the common communication channel may share an external resistance, for example, for calibration of respective programmable termination components of the memory devices. The memory devices that receive the identification request set a respective identification flag which can be read to determine which memory devices share an external resistance with the memory device having the set identification mode.
Abstract:
According to one embodiment, A data buffer is described. The data buffer comprises a first input/output circuit configured to receive and provide a first signal encoded according to a first communications protocol, a second input/output circuit configured to receive and provide a second signal encoded according to a second communications protocol, and a conversion circuit coupled to the first and second input/output circuits and configured to convert the first signal to the second signal and to convert the second signal to the first signal.
Abstract:
Apparatuses and methods for asymmetric input output interfaces for memory are disclosed. An example apparatus may include a receiver and a transmitter. The receiver may be configured to receive first data signals having a first voltage swing and having a first slew rate. The transmitter may be configured to provide second data signals having a second voltage swing and having a second slew rate, wherein the first and second voltage swings are different, and wherein the first and second slew rates are different.
Abstract:
Apparatuses and methods for asymmetric input/output interfaces for memory are disclosed. An example apparatus may include a receiver and a transmitter. The receiver may be configured to receive first data signals having a first voltage swing and having a first slew rate. The transmitter may be configured to provide second data signals having a second voltage swing and having a second slew rate, wherein the first and second voltage swings are different, and wherein the first and second slew rates are different.
Abstract:
Apparatuses and methods for calibrating adjustable impedances of a semiconductor device are disclosed in the present application. An example apparatus includes a register configured to store impedance calibration information and further includes programmable termination resistances having a programmable impedance. The example apparatus further includes an impedance calibration circuit configured to perform a calibration operation to determine calibration parameters for setting the programmable impedance of the programmable termination resistances. The impedance calibration circuit is further configured to program the impedance calibration information in the register related to the calibration operation.
Abstract:
An arbitration system and method is disclosed. The apparatus includes a first and a second memory devices, and a resistor coupled in common to the first and second memory devices, the first memory device includes a first calibration circuit configured to perform a first calibration operation responsive, at least in part, to an external calibration command, the first calibration operation being performed based on the resistor, and the second memory device includes a second calibration circuit configured to perform a second calibration operation responsive, at least in part, to the external calibration command, the second calibration operation being performed based on the resistor after the first calibration operation has finished.
Abstract:
Apparatuses and methods for asymmetric input/output interfaces for memory are disclosed. An example apparatus may include a receiver and a transmitter. The receiver may be configured to receive first data signals having a first voltage swing and having a first slew rate. The transmitter may be configured to provide second data signals having a second voltage swing and having a second slew rate, wherein the first and second voltage swings are different, and wherein the first and second slew rates are different.