Abstract:
An imaging system for a vehicle includes a tail lamp assembly that illuminates a field of illumination rearward of the vehicle. A light source control may operate at least one light source of the tail lamp assembly in a repeating cycle that includes (i) a first illumination period wherein light emitted by the tail lamp assembly has a first brightness level and (ii) a second illumination period wherein light emitted by the tail lamp assembly has a second brightness level that is lower than the first brightness level. A camera is operable to capture image data representative of a region that is at least in part within the field of illumination. A camera control may operate the camera to capture image data during at least part of the first illumination period.
Abstract:
A vision system for a vehicle includes a camera and an image processor. The camera has a forward field of view exterior of the vehicle. The image processor is operable to process image data captured by the camera. At least one device is operable to detect objects that are present forward of the vehicle and outside of the forward field of view of the camera. The device may include at least one of (i) a sensor, (ii) an element of a vehicle-to-vehicle communication system and (iii) an element of a vehicle-to-infrastructure communication system. Responsive to detection of the object being indicative of the object about to enter the field of view of the camera, the image processor anticipates the object entering the field of view of the camera and, upon entering of the field of view of the camera by the object, the image processor detects the object.
Abstract:
A vehicular vision system includes a side-mounted camera mounted at a side portion of vehicle and having a field of view exterior of the vehicle. The side-mounted camera includes a video output configured for transmitting to a control a stream of video captured by an image sensor of the side-mounted camera. The stream of video is transmitted to the control via a serial data bus linking the side-mounted camera to the control. The control includes a serial data interface for communication with at least one electronic device of the vehicle. The control sends instructions to the side-mounted camera via the serial data bus linking the side-mounted camera to the control. The control receives messages from the at least one electronic device of the vehicle via the serial data interface.
Abstract:
A vehicle vision system includes at least one camera disposed at a vehicle and having a field of view exterior of the vehicle, and includes a control having an image processor for processing image data captured by the at least one camera. The control, responsive at least in part to image processing of captured image data by the image processor, is operable to carry out one or more actions based on the detection of selected elements in the image data captured by the at least one camera. The control may control the operation of an additional component in the vehicle aside from the camera. The vision system may include a forward facing camera, a rearward facing camera and/or a sideward facing camera.
Abstract:
An imaging system of a vehicle includes a tail lamp assembly that illuminates a field of illumination rearward of the vehicle. A light source control operates at least one light source of the tail lamp assembly in a repeating cycle that includes (i) a first illumination period wherein light emitted by the tail lamp assembly has a first brightness level and (ii) a second illumination period wherein light emitted by the tail lamp assembly has a second brightness level that is lower than the first brightness level. A camera is operable to capture image data representative of a region that is at least in part encompassed by the field of illumination. A camera control may operate the camera to capture image data during at least part of the first illumination period and to not capture image data during at least part of the second illumination period.
Abstract:
A vehicular vision system includes a plurality of cameras mounted at a vehicle, with each camera including a respective image sensor and having a respective field of view exterior of the vehicle. The system includes a control and a video output for transmitting a stream of video captured by an image sensor of a camera of the plurality of cameras, and a serial data interface permitting a microcontroller of the control to communicate with at least one electronic device of the vehicle. A switch is openable by the microcontroller to deactivate the video output and closable by the microcontroller to activate the video output. The microcontroller complies with messages received via a serial data bus. The control sends instructions to a camera of the plurality of cameras via the serial data bus and the control receives messages from an electronic device of the vehicle via the serial data bus.
Abstract:
A vehicular vision system includes a camera including an image sensor, a control including a microcontroller, and a serial data interface. The camera has a field of view exterior of a vehicle. A video output is configured for transmitting a stream of video captured by the image sensor. The microcontroller is operatively connected to the image sensor. The serial data interface permits the microcontroller to communicate with at least one electronic device in the vehicle. A resistor having a selected impedance is connected in series with a switch. The resistor and the switch connect a video plus electrical conduit and a video minus electrical conduit. The switch is openable by the microcontroller to deactivate the video output into a high impedance state and is closable to activate the video output. The microcontroller is configured to comply with selected messages received through the serial data interface by opening the switch.
Abstract:
A method of obtaining data relating to a driver assistance system installed on a vehicle, including capturing sensory data (such as images) external to the vehicle via a sensor of the driver assistance system, buffering a first group of vehicle signals and storing a pre-event value for a signal of the first group in a pre-event buffer, and analyzing the sensory data to detect one or more types of probability events. After a probability event is detected, the method includes monitoring a second group of vehicle signals for a post-event time period after the occurrence of the detected probability event, and during the post event time period processing signals of the second group with a predetermined function to generate a post-event signal value, and recording data in a memory, with the recorded data including the type of detected probability event, a pre-event signal value and a post-event signal value.
Abstract:
A vehicular vision system includes a camera including an image sensor, a control including a microcontroller, and a serial data interface. The camera has a field of view exterior of a vehicle. A video output is configured for transmitting a stream of video captured by the image sensor. The microcontroller is operatively connected to the image sensor. The serial data interface permits the microcontroller to communicate with at least one electronic device in the vehicle. A resistor having a selected impedance is connected in series with a switch. The resistor and the switch connect a video plus electrical conduit and a video minus electrical conduit. The switch is openable by the microcontroller to deactivate the video output into a high impedance state and is closable to activate the video output. The microcontroller is configured to comply with selected messages received through the serial data interface by opening the switch.
Abstract:
A vehicular vision system includes an electronic control unit (ECU) configured to connect via a plurality of coaxial cables of a vehicle with a plurality of vehicular cameras of the vehicle. Electrical power for the cameras is carried from the ECU to the respective cameras via respective coaxial cables. The cameras include respective serializers operable to serialize image data captured by the cameras. The cameras include a forward-viewing camera and a rear backup camera. Responsive at least in part to processing at the ECU of de-serialized image data derived from image data captured by the forward-viewing camera, an object present forward of the vehicle is detected. Video images derived at least in part from processing at the ECU of de-serialized image data derived from image data captured by the rear backup camera are displayed at a video display device of the vehicle during a rear backup maneuver of the vehicle.