Abstract:
An arrangement for improving adhesive attachment of micro-components in an assembly utilizes a plurality of parallel-disposed slots formed in the top surface of the substrate used to support the micro-components. The slots are used to control the flow and “shape” of an adhesive “dot” so as to quickly and accurately attach a micro-component to the surface of a substrate. The slots are formed (preferably, etched) in the surface of the substrate in a manner that lends itself to reproducible accuracy from one substrate to another. Other slots (“channels”) may be formed in conjunction with the bonding slots so that extraneous adhesive material will flow into these channels and not spread into unwanted areas.
Abstract:
A silicon-on-insulator (SOI)-based tunable laser is formed to include the gain medium (such as a semiconductor optical amplifier) disposed within a cavity formed within the SOI substrate. A tunable wavelength reflecting element and associated phase matching element are formed on the surface of the SOI structure, with optical waveguides formed in the surface SOI layer providing the communication between these components. The tunable wavelength element is controlled to adjust the optical wavelength. Separate discrete lensing elements may be disposed in the cavity with the gain medium, providing efficient coupling of the optical signal into the SOI waveguides. Alternatively, the gain medium itself may be formed to include spot converting tapers on its endfaces, the tapers used to provide mode matching into the associated optical waveguides.
Abstract:
A plasma-based etching process is used to specifically shape the endface of an optical substrate supporting an optical waveguide into a contoured facet which will improve coupling efficiency between the waveguide and a free space optical signal. The ability to use standard photolithographic techniques to pattern and etch the optical endface facet allows for virtually any desired facet geometry to be formed—and replicated across the surface of a wafer for the entire group of assemblies being fabricated. A lens may be etched into the endface using a properly-defined photolithographic mask, with the focal point of the lens selected with respect to the parameters of the optical waveguide and the propagating free space signal. Alternatively, an angled facet may be formed along the endface, with the angle sufficient to re-direct reflected/scattered signals away from the optical axis.
Abstract:
An arrangement for providing alignment between an optical nanotaper coupler and a free space optical signal includes the formation of a “ridge” structure around the location of the nanotaper coupler to reduce stray light-related errors in the alignment process. The ridge is preferably formed by etching vertical sidewalls through the inter-level dielectric (ILD) and buried oxide (BOX) layers of the SOI structure. When an optical source (such as an illuminated fiber, laser, etc.) is scanned across this etched arrangement, the signal received by an associated photodetector registers an increase at the boundary between the etched region and the vertical sidewall of the ridge, thus defining the bounds within which the nanotaper coupler is located. Since the dimensions of the ridge are known and controlled by the etching process, the location of the nanotaper coupler tip along the endface of the ridge can be determined from this scan.
Abstract:
Disclosed herein are various embodiments of methods, systems, and apparatuses for sending and receiving signals in a digital communication system. In one embodiment performs steps of transmitting a signal from a device with a first antenna array and calibrating the signal with a phase shift of the signal. In one exemplary method embodiment, a signal is transmitted from a beam-forming transmitter to an assisting receiver in an IEEE 802.11 wireless transmission. A return calibration signal from the assisting receiver with information regarding the phase error of signal is received by the beam-forming transceiver. The beam-forming transmitter introduces a calibration phase error to cancel the phase error as reported by the assisting receiver.
Abstract:
Various packet processing systems and methods are disclosed. One method embodiment, among others, comprises providing a legacy long training symbol (LTS), and inserting subcarriers in the legacy LTS to form an extended LTS (ELTS).
Abstract:
A moving floor system that includes a moving work surface to move work products from an upstream end to a downstream end. The moving work surface is formed from a plurality of individual carts joined to each other. The stack of carts is moved along upper support rails located at an upper level. When each individual cart reaches the downstream end, a downstream lift conveyor moves the individual cart from the upper level to a lower level. When at the lower level, each individual cart is returned from the downstream end to the upstream end. When each individual cart reaches the upstream end, an upstream lift conveyor returns the individual carts from the lower level to the upper level. An upper drive mechanism provides the motive force to move the stack of carts along the upper level at the working speed.
Abstract:
A silicon-based optical modulator exhibiting improved modulation efficiency and control of “chirp” (i.e., time-varying optical phase) is provided by separately biasing a selected, first region of the modulating device (e.g., the polysilicon region, defined as the common node). In particular, the common node is biased to shift the voltage swing of the silicon-based optical modulator into its accumulation region, which exhibits a larger change in phase as a function of applied voltage (larger OMA) and improved extinction ratio. The response in the accumulation region is also relatively linear, allowing for the chirp to be more easily controlled. The electrical modulation input signal (and its inverse) are applied as separate inputs to the second region (e.g., the SOI region) of each arm of the modulator.
Abstract:
A method and system for controlling the operation of a drive motor for a vertical reciprocating conveyor. The method initially activates a drive motor to move a carriage from a resting position. After initial start-up period, the method sets a threshold current value as the present current value being drawn by the drive motor. The method compares subsequent present current value measurements to the threshold current value and determines whether the present current value exceeds or falls below the threshold current value by more than an operating limit. If the present current value falls within the operating limits, the threshold current value is updated to the present current value on a periodic basis. In this manner, the method continuously updates the threshold current value to compensate for an increase in the weight being lifted by the vertical reciprocating conveyor.
Abstract:
An optical coupler is formed of a low index material and exhibits a mode field diameter suitable to provide efficient coupling between a free space optical signal (of large mode field diameter) and a single mode high index waveguide formed on an optical substrate. One embodiment comprises an antiresonant reflecting optical waveguide (ARROW) structure in conjunction with an embedded (high index) nanotaper coupling waveguide. Another embodiment utilizes a low index waveguide structure disposed in an overlapped arrangement with a high index nanotaper coupling waveguide. The low index waveguide itself includes a tapered region that overlies the nanotaper coupling waveguide to facilitate the transfer of the optical energy from the low index waveguide into an associated single mode high index waveguide. Methods of forming these devices using CMOS processes are also disclosed.