摘要:
A method of manufacturing a surface acoustic wave device having a high electromechanical coefficient and reflection coefficient, and also having an improved frequency-temperature characteristic is achieved by forming a SiO2 film on an IDT so as to prevent cracking from occurring on a surface of the SiO2 film so that desired properties can be reliably obtained. The surface acoustic wave device includes at least one IDT, which is composed of a metal or an alloy having a density higher than that of Al and is formed on a 25° to 55° rotation-Y plate X propagation LiTaO3 substrate, and a SiO2 film disposed on the LiTaO3 substrate so as to cover the at least one IDT for improving the frequency-temperature characteristic.
摘要:
A surface acoustic wave device has a high electromechanical coefficient and reflection coefficient, and also has an improved frequency-temperature characteristic that is achieved by forming a SiO2 film on an IDT so as to prevent cracking from occurring on a surface of the SiO2 film so that desired properties can be reliably obtained. The surface acoustic wave device includes at least one IDT, which is composed of a metal or an alloy having a density higher than that of Al and is formed on a 25° to 55° rotation-Y plate X propagation LiTaO3 substrate, and a SiO2 film disposed on the LiTaO3 substrate so as to cover the at least one IDT for improving the frequency-temperature characteristic.
摘要:
A reliable SAW device has excellent reflection and a small size, which is achieved by reducing the number of fingers defining reflectors, such that losses due to a large electromechanical coupling coefficient are small and the film thickness of electrodes has much less effect on frequencies of the device. In the SAW device having pluralities of first fingers and second fingers, disposed on a quartz substrate, constituting an IDT for exciting SH waves and reflectors for reflecting the SH waves, respectively, the first and second fingers made mainly from Al are disposed on the ST-cut 90° X-propagation quartz substrate with the Euler angles (0°, θ, 90°±2°), wherein the angle θ is within the range of about 110° to about 150°, and a normalized film thickness (H/λ) of the fingers is within in the range of about 0.025 to about 0.135.
摘要:
A surface acoustic wave device includes a surface acoustic wave element housed in a main body of a package. The surface acoustic wave element is electrically connected to electrode lands of the package via bonding wires, and the bonding wires are arranged so as not to pass over both of IDTs and reflectors of the surface acoustic wave device.
摘要:
A surface acoustic wave device includes a piezoelectric substrate, and at least one interdigital transducer disposed thereon which is made of a metal or an alloy that is heavier than Al. The acoustic velocity distribution of surface acoustic waves in the extending direction of electrode fingers of the at least one interdigital transducer is not greater than about 276 ppm, thereby effectively suppressing considerable ripples, which are noticeably found in the group delay time characteristic in particular, within the bandpass area.
摘要:
A surface acoustic wave device includes a piezoelectric substrate, at least one interdigital transducer (IDT) electrode provided on the piezoelectric substrate, and an insulator layer to improve a temperature characteristic arranged so as to cover the IDT electrode. When a surface of the insulator layer is classified into a first surface region under which the IDT electrode is positioned and a second surface region under which no IDT electrode is positioned, the surface of the insulator layer in at least one portion of the second surface region is higher than the surface of the insulator layer from the piezoelectric substrate in at least one portion of the first surface region by at least about 0.001λ, where the wavelength of an acoustic wave is λ.
摘要:
A surface acoustic wave device prevents a decrease in yield and a decrease in reliability, such as an impulse withstand voltage, and achieves good frequency characteristics, even when using higher frequencies. The surface acoustic wave device includes an IDT electrode disposed on a piezoelectric substrate, and a first insulating film and at least one second insulating film disposed on the IDT electrode, and utilizes a higher-order mode of an SH wave, in which the acoustic velocity of a surface acoustic wave in the first insulating film located closer to the IDT electrode than the insulating film at an outermost surface is higher than the acoustic velocity of a surface acoustic wave in the second insulating film located at the outermost surface.
摘要:
In an acoustic wave resonator, an IDT electrode is provided on a piezoelectric substrate. The IDT electrode is apodization-weighted such that a plurality of maximum values of cross widths are provided in acoustic wave propagation directions. Alternatively, in apodization weighting, weighting is applied such that at least one of a pair of envelopes located at outer side portions of the IDT electrode in directions substantially perpendicular to acoustic wave propagation directions includes a plurality of angled envelope portions angled from a central portion of the IDT electrode toward an outer side portion of the IDT electrode in a direction substantially perpendicular to the acoustic wave propagation directions.
摘要:
In an acoustic wave resonator, an IDT electrode is provided on a piezoelectric substrate. The IDT electrode is apodization-weighted such that a plurality of maximum values of cross widths are provided in acoustic wave propagation directions. Alternatively, in apodization weighting, weighting is applied such that at least one of a pair of envelopes located at outer side portions of the IDT electrode in directions substantially perpendicular to acoustic wave propagation directions includes a plurality of angled envelope portions angled from a central portion of the IDT electrode toward an outer side portion of the IDT electrode in a direction substantially perpendicular to the acoustic wave propagation directions.
摘要:
In a manufacturing method for a SAW apparatus a first insulating layer is formed on the entire surface of a piezoelectric LiTaO3 substrate. By using a resist pattern used for forming an IDT electrode, the first insulating layer in which the IDT electrode is to be formed is removed. An electrode film made of a metal having a density higher than Al or an alloy primarily including such a metal is disposed in the area in which the first insulating layer is removed so as to form the IDT electrode. The resist pattern remaining on the first insulating layer is removed. A second insulating layer is formed to cover the first insulating layer and the IDT electrode.