Abstract:
A method implemented in a user terminal is disclosed. The method comprises obtaining known precoding matrix P of rank r and modulation and coding scheme assignments used in an original transmission, and a desired retransmission rank r′, forming an approximate channel covariance matrix, estimating a minimum mean square error receiver SINR for each layer to be retransmitted responsive to said forming, and finding a retransmission precoding matrix from a preceding codebook that maximizes a sum-rate for enabling precoding selections for retransmissions in uplink multiple-input multiple-output MIMO hybrid automatic repeat request HARQ. Other methods, apparatuses, and systems also are disclosed.
Abstract:
A method implemented in a base station used in a wireless communications system where different antenna arrays are employed for transmissions to different co-scheduled users in a cell is disclosed. The method includes configuring multiple channel state information (CSI) processes for a user equipment (UE), and configuring, for the UE, a plurality of non-zero power (NZP) CSI reference signal (RS) resources, each of which is associated with an antenna array. Other apparatuses, systems, and methods also are disclosed.
Abstract:
There is provided a method for generating transmit precoders for a communication system having a plurality of transmitters and a plurality of receivers forming a plurality of transmitter-receiver pairs. Each of the transmitters and receivers has a respective plurality of antennas. The method includes initializing the transmit precoders. The method further includes updating a plurality of receiver filters and a plurality of slack variables using closed form expressions. The method also includes updating the transmit precoders responsive to an output of said prior updating step. The method additionally includes iteratively repeating the updating steps until convergence is reached to obtain a final set of transmit precoders. The transmit precoders are updated to perform precoding for multiple stream data transmission for each of the plurality of transmitter-receiver pairs on each of a plurality of slots under a per-antenna power constraint imposed on each of the plurality of antennas.
Abstract:
Methods and a system are provided for enhanced long-term evolution scheduling. A ranking is constructed for one or more users scheduled on one or more resource blocks. A layer mapping is generated, using a finite modulation and coding scheme, utilizing the ranking of each of the one or more users for the one or more resource blocks. An enhanced ranking is determined, using a finite constraint on a buffer for each of the one or more users, for the one or more resource blocks utilizing the layer mapping. The enhanced ranking is deployed into a schedule for the one or more resource blocks being utilized by each of the one or more users. Bandwidth usage is optimized in the one or more resource blocks by utilizing the schedule.
Abstract:
A computer-implemented method executed in a wireless communication system for establishing communication links in a millimeter wave network is presented. The method includes determining active communication links between a plurality of transmitters and a plurality of receivers operated by a plurality of users and formulating a quality of service (QoS) proportional fairness (PF) network utility as a constrained submodular set function maximization problem. The method further includes performing an optimization framework by optimizing, based on the active communication links, user association for fixed transmit beam patterns and optimizing, based on the active communication links, the fixed transmit beam patterns and corresponding beam attributes for a fixed set of user associations. The method also includes iteratively performing the optimizing steps in an alternating manner to determine a user from the plurality of users that optimizes the constrained submodular set function maximization problem and assigning the determined user to a cell.
Abstract:
In a wireless communications system including a first transmission point and a second transmission point, a wireless communications method implemented in the first transmission point supporting coordinated multi-point transmission and reception (CoMP) is disclosed. The wireless communications method comprises transmitting to the second transmission point one or more CoMP hypothesis sets, and transmitting to the second transmission point a benefit metric corresponding to each CoMP hypothesis set, wherein the benefit metric can be a negative value. Other methods, systems, and apparatuses also are disclosed.
Abstract:
Methods and a system are provided for enhanced long-term evolution scheduling. A ranking is constructed for one or more users scheduled on one or more resource blocks. A layer mapping is generated, using a finite modulation and coding scheme, utilizing the ranking of each of the one or more users for the one or more resource blocks. An enhanced ranking is determined, using a finite constraint on a buffer for each of the one or more users, for the one or more resource blocks utilizing the layer mapping. The enhanced ranking is deployed into a schedule for the one or more resource blocks being utilized by each of the one or more users. Bandwidth usage is optimized in the one or more resource blocks by utilizing the schedule.
Abstract:
A method is provided for performing downlink scheduling in Long Term Evolution-Advanced networks. The method includes assigning resource blocks and transmission modes to users such that (i) each of the users that is assigned at least one of the resource blocks is assigned only one transmission mode chosen from a finite set of transmission modes, (ii) a sum of normalized costs across all of the resource blocks that are assigned to the users is less than unity. The method further includes incorporating a resource block and transmission mode assignment for a user into downlink scheduler of a base station to cause the downlink scheduler to perform downlink scheduling in accordance with the resource block and transmission mode assignment.
Abstract:
We show that for any given muting fraction, a more constrained version of the problem of interest can be optimally solved in an efficient manner. In addition, the obtained solution is also a near-optimal solution for the original problem (for the given muting ratio). This allows us provide an algorithm that offers a good solution to the original problem with a tractable complexity. We also derive a lower complexity greedy that offers good performance and a certain worst-case performance guarantee. Simulations over an example LTE HetNet topology reveal the superior performance of the proposed algorithms and underscore the benefits of jointly exploiting partial muting of the macro and load balancing.
Abstract:
A method and system are provided. The method includes providing transmit precoders for a multiple-input and multiple-output communication system having a plurality of transmit antennas. The plurality of transmit antennas are for forming, using precoding, a plurality of channels such that each of the plurality of channels are configurable to serve a respective one of a plurality of users. The providing step includes imposing a respective average transmit antenna power constraint on each of the plurality of transmit antennas. The providing step further includes determining a diagonal precoder responsive to applying column scaling to a downlink channel matrix having a plurality of rows and a plurality of columns. The providing step additionally includes generating, from the diagonal precoder, a weighted precoder in accordance with the respective average antenna power constraint by optimizing a weighted sum-rate obtained upon transmitting respective signals over the plurality of channels.