Abstract:
A method and system are provided. The method includes providing transmit precoders for a multiple-input and multiple-output communication system having a plurality of transmit antennas. The plurality of transmit antennas are for forming, using precoding, a plurality of channels such that each of the plurality of channels are configurable to serve a respective one of a plurality of users. The providing step includes imposing a respective average transmit antenna power constraint on each of the plurality of transmit antennas. The providing step further includes determining a diagonal precoder responsive to applying column scaling to a downlink channel matrix having a plurality of rows and a plurality of columns. The providing step additionally includes generating, from the diagonal precoder, a weighted precoder in accordance with the respective average antenna power constraint by optimizing a weighted sum-rate obtained upon transmitting respective signals over the plurality of channels.
Abstract:
Disclosed are methods and structures for soft symbol and variance estimation for QAM constellations including a big-flipping framework and efficient methods for soft symbol estimation and variance estimation for QAM. Disclosed are efficient Gray mapping which provides a much lower complexity, i.e., log N for N-QAM for both squared and non-squared QAM constellations. Also disclosed is an approximation method that avoids multiplications completely while exhibiting only a slight performance degradation. Finally, a low complexity method for variance estimations, particularly second moment estimations for both squared and non-squared QAM constellations with Gray mapping are disclosed. Advantageously—using the disclosed methods—the complexity of the second moment estimation is reduced to O((log N)^2) for an N-QAM symbol for both squared and non-squared QAM.
Abstract:
A method implemented in a base station used in a wireless communications system is disclosed. The method comprises receiving, from a user equipment, rank indication (RI), a first precoding matrix indicator (PMI), and a second PMI (codebook index i2), wherein values 0-15 are assigned to the second PMI IPMI2 for RI=1 and values 0-3 are assigned to the second PMI IPMI2 for each of RI=2, RI=3, and RI=4, and wherein codebook index i2 comprises IPMI2 for RI=1. Other methods, apparatuses, and systems also are disclosed.
Abstract:
A communications method implemented in a transmission point (TP) used in a coordinated multipoint transmission and reception (CoMP) system is disclosed. The communications method comprises transmitting, to a user equipment (UE), attributers for up to four indicators indicating at least physical downlink shared channel (PDSCH) resource element (RE) mapping, and transmitting, to the UE, one of the four indicators, each of which is conveyed in 2 bits, wherein the four indicators comprises ‘00’, ‘01’, ‘10’, and ‘11’ corresponding to a first set, a second set, a third set, and a fourth set of parameters, respectively. Other methods, apparatuses, and systems are also disclosed.
Abstract:
A method implemented in a user terminal is disclosed. The method comprises obtaining known precoding matrix P of rank r and modulation and coding scheme assignments used in an original transmission, and a desired retransmission rank r′, forming an approximate channel covariance matrix, estimating a minimum mean square error receiver SINR for each layer to be retransmitted responsive to said forming, and finding a retransmission precoding matrix from a preceding codebook that maximizes a sum-rate for enabling precoding selections for retransmissions in uplink multiple-input multiple-output MIMO hybrid automatic repeat request HARQ. Other methods, apparatuses, and systems also are disclosed.
Abstract:
Methods are provided. A method includes determining respective weighted likelihoods corresponding to a plurality of users in a multiple-input multiple-output communication system. The method further includes forming a plurality of user groups from the plurality of users using an iterative K-means clustering technique applied to the plurality of users. The iterative K-means clustering technique is responsive to the respective weighted likelihoods.
Abstract:
A method implemented in a user equipment configured to be used in a multi-user (MU) multiple-input multiple-output (MIMO) wireless communications system is disclosed. The method includes transmitting to a base station a first channel state information (CSI) report determined according to a single-user (SU) MIMO rule, and transmitting to the base station a second CSI report determined according to an MU-MIMO rule. Other methods, apparatuses, and systems also are disclosed.
Abstract:
A method for determining attributes of communication channels of multi-user (MU)-multiple input multiple output (MIMO) users in an orthogonal frequency division multiplexing based multiple access (OFDMA) system is disclosed. The method comprises receiving from a base station, for at least one sub-band of contiguous sub-carriers, an indication of an estimate of or an upper-bound on a total number of streams that are co-scheduled by the base station on the at least one sub-band or an indication of a fraction of a transmit power at the base station that is applied to streams that are scheduled for transmission to a particular user, determining one or more signal quality measures for the at least one sub-band based on at least one of the fraction or the estimate of or the upper-bound on the total number of streams that are scheduled by the base station on the at least one sub-band, and transmitting to the base station an indication of the one or more signal quality measures. Other methods, apparatuses, and systems also are disclosed.
Abstract:
A method implemented in a user equipment used in a multi-user multiple input multiple output (MU-MIMO) wireless communications system is disclosed. The method includes receiving from a base station an indication of a first modulation type for the user equipment, receiving a first data signal for the user equipment, receiving a second data signal for a co-scheduled user equipment, where a second modulation type for the co-scheduled user equipment is unknown to the user equipment, and deciding the second modulation type. Other methods, systems, and apparatuses also are disclosed.
Abstract:
A method implemented in a mobile communications network supporting coordinated multiple point transmission and reception (CoMP) is disclosed. The method includes transmitting, to a user equipment (UE), data in a physical downlink shared channel (PDSCH), and transmitting a reference signal to the UE, wherein a union of resource elements (REs) allocated for reference signals transmitted from a subset of a plurality of transmission points (TPs) in a CoMP set are excluded from resource mapping for transmitting the data to the UE. Other methods, systems, and apparatuses also are disclosed.