Abstract:
Optimizing a wireless power system by separately optimizing received power and efficiency. Either one or both of received power and/or efficiency can be optimized in a way that maintains the values to maximize transferred power.
Abstract:
A wireless powering and charging system is described. The antennas can be high q loop antennas. The antennas can use coupling between a first part and a second part.
Abstract:
Exemplary embodiments are directed to wireless charging and wireless power alignment of wireless power antennas associated with a vehicle. A wireless power charging apparatus includes an antenna including first and second orthogonal magnetic elements for detecting a horizontal component of a magnetic field generated from a second charging base antenna. A processor determines a directional vector between the antennas.
Abstract:
A wireless power system includes a power source, power receiver, and components thereof. A current sensor senses the amount of current through the antenna. That amount of current is then used to adjust characteristics of the transmitting or receiving.
Abstract:
Exemplary embodiments are directed to wireless power transfer. A wireless power transmission receiver includes a receive antenna including a parallel resonator configured to resonate in response to a magnetic near-field and couple wireless power therefrom. The receiver further includes a passive rectifier circuit coupled to the parallel resonator. The passive rectifier circuit is configured to transform a load impedance to the parallel resonator.
Abstract:
Exemplary embodiments are directed to wireless power transfer. A wireless power transceiver and device comprise an antenna including a parallel resonator configured to resonate in response to a substantially unmodulated carrier frequency. The wireless power transceiver further comprises a bidirectional power conversion circuit coupled to the parallel resonator. The bidirectional power conversion circuit is reconfigurable to rectify an induced current received at the antenna into DC power and to induce resonance at the antenna in response to DC power.
Abstract:
Exemplary embodiments are directed to wireless power transfer. A wireless power receiver includes a receive antenna for coupling with a transmit antenna of transmitter generating a magnetic near field. The receive antenna receives wireless power from the magnetic near field and includes a resonant tank and a parasitic resonant tank wirelessly coupled to the resonant tank. A wireless power transmitter includes a transmit antenna for coupling with a receive antenna of a receiver. The transmit antenna generates a magnetic near field for transmission of wireless power and includes a resonant tank and a parasitic resonant tank coupled to the resonant tank.
Abstract:
A system that automatically detects the presence of an automobile that can operate wirelessly to recharge the battery therein, and detects account information associated with that automobile. When the account information is properly detected, the amount of power delivered is metered, and thereafter the power used by a user is Bill to the user at a markup based on that distributed by the distribution company.
Abstract:
A wireless power system includes a power source, power receiver, and components thereof. The system can also include a parasitic antenna that can improve the coupling to the power source in various modes. The antenna can have both a variable capacitor and a variable inductor, and both of those can be changed in order to change characteristics of the matching.