Abstract:
A method including configuring one or more reference signals and/or channels in a carrier bandwidth including one or more physical resource units; and causing information on the configuration of said one or more reference signals and/or channels to be provided to another base station using a same or overlapping carrier bandwidth.
Abstract:
There is provided a method comprising controlling receiving, at a node, subframe type configuration information, said subframe type configuration information defining at least one subframe type of a group of subframes to be used in a secondary cell, said secondary cell configured to provide at least one of licensed-assisted access, licensed shared access and co-primary sharing access and using said subframe type configuration information to cause the node to operate in accordance with that configuration in the secondary cell.
Abstract:
There is provided a method including determining, at a user device capable of transmitting at least one subframe, the subframe having a subframe structure including at least one first symbol associated with one of physical layer signals and a first channel, and at least one second symbol associated with a second channel, if the respective one of physical layer signals and the first channel is scheduled to be transmitted in the at least one first symbol and, if the respective one of physical layer signals and the first channel is not scheduled to be transmitted in the at least one first symbol, causing transmission of a signal indicating channel occupancy during the at least one first symbol and transmission of the second channel during the at least one second symbol.
Abstract:
Various communication systems may benefit from appropriate handling of uplink communications. For example, certain wireless communication systems may benefit from an uplink coverage extension for unlicensed band operation. A method can include configuring a first interlace having a first starting physical resource block. The method can also include configuring a second interlace having a second starting physical resource block offset from the first physical resource block. The method can further include transmitting or receiving a signal based on a combination of the first interlace and the second interlace. The combination can include at least one cluster but less than two clusters in each measurement interval.
Abstract:
There is provided a method comprising determining, at a first access point, whether a carrier from a plurality of carriers is a primary listen-before-talk carrier or a secondary listen-before-talk carrier and providing information using the carrier, said information comprising an indication of whether the respective carrier is a primary listen-before-talk carrier or a secondary listen-before-talk carrier.
Abstract:
A method includes receiving initial acknowledgement resource information at a user device from a base station. The initial acknowledgement resource information is associated with a subset of acknowledgement resources. The method includes determining in dependence on the initial acknowledgement resource information which of the subset of acknowledgement resources is to be used. The user device transmits an acknowledgement on the determined resource.
Abstract:
In one exemplary embodiment, a method includes: configuring a common resource space having a plurality of time-frequency resources and code resources, where the common resource space includes a first portion for a first type of signaling and a second portion for a second type of signaling, where the first type of signaling includes at least one of persistent acknowledgement signaling and scheduling request signaling, where the second type of signaling includes dynamic acknowledgement signaling; and allocating, based on the configured common resource space, resources of the common resource space for the at least one of persistent acknowledgement signaling and scheduling request signaling.
Abstract:
A method including receiving at a user equipment first power information for transmitting to a first base station, receiving at the user equipment second power information for transmitting to a second base station, causing said user equipment to transmit to said first base station with a first power less than or equal to a first maximum power dependent on said first power information and causing said user equipment to transmit to said second base station with a second power less than or equal to a second maximum power dependent on said second power information, such that said first and second power does not exceed a total power allowed for said user equipment.
Abstract:
There are provided measures for reference configuration for flexible time division duplexing. Such measures exemplarily include obtaining a first configuration parameter and a second configuration parameter, determining an uplink reference configuration for a flexible uplink/downlink mode from said first configuration parameter, determining a downlink reference configuration for said flexible uplink/downlink mode from said second configuration parameter, and deriving an uplink/downlink configuration candidate set based on at least one of said first configuration parameter and said second configuration parameter.
Abstract:
There is provided a method for defining at least one channel reservation window the method comprising: setting length for each of the at least one channel reservation window such that each channel reservation window comprises a plurality of sub-frames; dividing the length of each channel reservation window into a transmission part and an idle part, wherein the idle part consists of one or more symbols in one sub-frame; maximizing, at a symbol level accuracy, the length of the transmission part such that a ratio between the length of the idle part and the length of the transmission part fulfils a predetermined criterion; and concatenating the transmission part and the idle part so as to form the channel reservation window.