Abstract:
A method used in an optical mouse apparatus includes: generating and emitting a light signal which is emitted to a surface so as to reflect and generate a light reflected signal; generating sensed image(s) according to the light reflected signal wherein the sensed image(s) are used for estimating an offset of the optical mouse apparatus; dynamically adjusting photometric exposure for the sensed image(s) according to a quality parameter, a moving speed, or an output offset number per unit time of the sensed image(s).
Abstract:
There is provided a communication system including a transmission interface, a master device and a slave device. The transmission interface includes a TR/ACK channel configured to transmit a trigger signal and an acknowledge signal and a DA channel configured to transmit a normal data or a simplified data. The master device sends the trigger signal via the TR/ACK channel before data transmission begins. The slave device sends the normal data or the simplified data to the master device via the DA channel after receiving the trigger signal.
Abstract:
An electronic apparatus that can utilize a first report rate to generate a first report rate output signal according to an output signal or can utilize a second report rate smaller than the first report rate to generate a second report rate output signal according to the output signal. The electronic apparatus comprises: a first signal smoothing apparatus; a second signal smoothing apparatus having a smooth ability smaller than the first signal smoothing apparatus and a processing unit, for selecting the first signal smoothing apparatus to process the first report rate output signal when the electronic apparatus utilizes the first report rate to generate signal, and for selecting the second signal smoothing apparatus to process the second report rate output signal when the electronic apparatus utilizes the second report rate to generate signal.
Abstract:
An optical navigation device includes a first optical mechanism, a second optical mechanism, an image sensor, and a controller. The first optical mechanism is arranged for projecting light on a surface to generate a first projection result while the second optical mechanism is arranged for projecting light on the surface to generate a second projection result. The image sensor is arranged for sensing at least one of the first projection result and the second projection result within a sensing range to generate at least one first image sensing result. The controller is coupled to the first optical mechanism, the second optical mechanism and the image sensor, and is arranged for controlling the first optical mechanism and the second optical mechanism according to the first image sensing result. The optical navigation device accordingly performs movement detection.
Abstract:
A method of automatically updating a datum is disclosed in the present invention. The method is applied to a signal outputting device and at least one signal receiving device for datum updating transmission. The method includes outputting a detecting signal to detect whether the signal receiving device is located within an effective range of the detecting signal, receiving a reacting signal generated according to the detecting signal, outputting a request of datum transmission when a distance is smaller than a threshold value, and transmitting the datum to the signal receiving device by wireless transmission when the request is allowed, so as to drive the signal receiving device to execute application program according to the updated datum. The detecting signal represents the distance between the signal outputting device and the signal receiving device.
Abstract:
A physiological detection system including a light source module, a photo sensor and a processor is provided. The light source module is configured to provide light to illuminate a skin region. The photo sensor is configured to detect emergent light passing the skin region with at least one signal source parameter and output an image signal. The processor is configured to calculate a confident level according to the image signal to accordingly adjust the at least one signal source parameter.
Abstract:
A physiological detection system including a light source module, a photo sensor and a processor is provided. The light source module is configured to provide light to illuminate a skin region. The photo sensor is configured to detect emergent light passing the skin region with at least one signal source parameter and output an image signal. The processor is configured to calculate a confident level according to the image signal to accordingly adjust the at least one signal source parameter.
Abstract:
An optical flow sensing method includes: using an image sensor to capture images; using a directional-invariant filter device upon at least one first block of the first image to process values of pixels of the at least one first block of the first image, to generate a first filtered block image; using the first directional-invariant filter device upon at least one first block of the second image to process values of pixels of the at least one first block of the second image, to generate a second filtered block image; comparing the filtered block images to calculate a correlation result; and estimating a motion vector according to a plurality of correlation results.
Abstract:
An image processing method capable of detecting noise includes adjusting a lighting unit to acquire an over-exposure image, comparing each pixel of the over-exposure image with at least one threshold value, labeling a pixel of the over-exposure image as the noise while bright intensity of the pixel is lower than the threshold value, calculating a simulating value according to bright intensity of pixels around the noise and except the noise, and utilizing the simulating value and bright intensity of other pixels except the noise to execute a displacement detecting calculation.
Abstract:
A control system, a mouse and a control method thereof are provided. The control system comprises a dongle and the mouse. The dongle is wiredly connected to a host and has a first light source for emitting a first light. The mouse is wirelessly connected to the dongle and has a transmitter, a second light source for emitting a second light, an optical sensor and a processor. The optical sensor senses the first light at a first time interval to generate a first sensing signal and then also, senses the second light at a second time interval to generate a second sensing signal. The processor generates a first control signal and a second control signal according to the first sensing signal and the second sensing signal, respectively, and transmits them to the dongle via the transmitter so that the host receives the first and second control signals via the dongle.