Abstract:
A generation device includes: a communication interface via which two-dimensional (2D) images are to be received, the 2D images having been generated by photographing a space from different viewpoints with at least one camera; and a processor connected to the communication interface and configured to determine, according to the 2D images, a matching pattern to match feature points included in two pictures among the 2D images, match the feature points according to the matching pattern in order to generate first three-dimensional (3D) points, the first 3D points indicating respective first positions in the space, generate second 3D point based on the 2D images, the second 3D point indicating a second position in the space, and generate a 3D model of the space based on the first 3D points and the second 3D point.
Abstract:
A generation method is disclosed. Two-dimensional (2D) images that are generated by photographing a space from different viewpoints with at least one camera are obtained. Resolutions of the 2D images are reduced to generate first images, respectively. Second images are generated from the 2D images, respectively such that a resolution of each of the second images is higher than a resolution of any one of the first images. First three-dimensional (3D) points are generated based on the first images. The first 3D points indicate respective first positions in the space. A second 3D point is generated based on the second images. The second 3D point indicates a second position in the space. A 3D model of the space is generated based on the first 3D points and the second 3D point.
Abstract:
A three-dimensional model distribution method includes: distributing a first model, which is a three-dimensional model of a target space in a target time period, in a first distribution mode; and distributing a second model, which is a three-dimensional model of the target space in the target time period and makes a smaller change per unit time than the first model, in a second distribution mode different from the first distribution mode.
Abstract:
A display method is a display method performed by a display device that operates in conjunction with a mobile object, and includes: determining which one of first surrounding information, which is video showing a surrounding condition of the mobile object and is generated using two-dimensional information, and second surrounding information, which is video showing the surrounding condition of the mobile object and is generated using three-dimensional data, is to be displayed, based on a driving condition of the mobile object; and displaying the one of the first surrounding information and the second surrounding information that is determined to be displayed.
Abstract:
A three-dimensional data creation method includes: creating first three-dimensional data from information detected by a sensor; receiving encoded three-dimensional data that is obtained by encoding second three-dimensional data; decoding the received encoded three-dimensional data to obtain the second three-dimensional data; and merging the first three-dimensional data with the second three-dimensional data to create third three-dimensional data.
Abstract:
An image coding method for coding an image on a block-by-block basis, includes: selecting, for each of a plurality of sub-blocks included in a coding-target block and each including a plurality of coefficients, a context for performing arithmetic coding on a parameter indicating a coding-target coefficient included in the sub-block from a context set corresponding to the sub-block, based on at least one reference coefficient located around the coding-target coefficient, the coding-target block being a transform unit; and performing arithmetic coding on the parameter indicating the coding-target coefficient using probability information about the selected context, wherein, in the selecting, the context is selected from the context set, the context set corresponding to a sum of (i) a value indicating a position in a horizontal direction of the sub-block in the coding-target block and (ii) a value indicating a position in a vertical direction of the sub-block in the coding-target block.
Abstract:
The image decoding method includes: determining a context for use in a current block to be processed, from among a plurality of contexts; and performing arithmetic decoding on a bit sequence corresponding to the current block, using the determined context, wherein in the determining: the context is determined under a condition that control parameters of neighboring blocks of the current block are used, when the signal type is a first type, the neighboring blocks being a left block and an upper block of the current block; and the context is determined under a condition that the control parameter of the upper block is not used, when the signal type is a second type, and the second type is “inter_pred_flag”.
Abstract:
An image coding method includes: writing, into a sequence parameter set, buffer description defining information for defining a plurality of buffer descriptions; selecting one of the buffer descriptions for each processing unit that is a picture or a slice, and writing buffer description selecting information for specifying the selected buffer description, into a first header of the processing unit which is included in the coded bitstream; and coding the processing unit using the selected buffer description, and the buffer description defining information includes long-term information for identifying, among a plurality of reference pictures indicated in the buffer descriptions, a reference picture to be assigned as a long-term reference picture.
Abstract:
An encoding and decoding apparatus is provided for performing arithmetic encoding and arithmetic decoding. The encoding apparatus encodes in a first bitstream first last position information, indicating a horizontal position and a vertical position of a last non-zero coefficient in a predetermined order from among a plurality of coefficients within a first current block to be encoded in a first picture. The decoding apparatus decodes second last position information, indicating a horizontal position and a vertical position of a last non-zero coefficient in a predetermined order from among a plurality of coefficients within a second current block to be decoded in a second picture.
Abstract:
A decoding method of decoding encoded data per unit from among units included in a picture is provided. The decoding method decodes a first flag which indicates whether a removal time of the encoded data from a buffer is set per unit. The buffer is for storing the encoded data. The image decoding method further decodes a second flag indicating whether an interval between removal times of the units is constant when the removal time is set per unit. The image decoding method removes the encoded data from the buffer per unit and at an interval according to the second flag, and decodes the removed encoded data.