摘要:
A method for preparing a transmission electron microscopy (TEM) sample for electron holography includes forming a sacrificial material over an area of interest on the sample, and polishing the sample to a desired thickness, wherein the area of interest is protected from rounding during the polishing. The sacrificial material is removed from the sample following the polishing.
摘要:
A method for enhancing spatial resolution of a transmission electron microscopy TEM) system configured for electron holography. In an exemplary embodiment, the method includes configuring a first lens to form an initial virtual source with respect to an incident parallel beam, the initial virtual source positioned at a back focal plane of said first lens. A second lens is configured to form an intermediate virtual source with respect to the incident parallel beam, the position of said intermediate virtual source being dependent upon a focal length of the first lens and a focal length of the second lens. A third lens is configured to form a final virtual source with respect to the incident parallel beam, wherein the third lens has a focal length such that a front focal plane of the third lens lies beyond the position of the intermediate virtual source, with respect to a biprism location.
摘要:
A method of forming a semiconductor device includes implanting an amorphizing species into a crystalline semiconductor substrate, the substrate having a transistor gate structure formed thereupon. Carbon is implanted into amorphized regions of the substrate, with specific implant conditions tailored such that the peak concentration of carbon species coincides with the end of the stacking faults, where the stacking faults are created during the recrystallization anneal. The implanted carbon pins partial dislocations so as to prevent the dislocations from disassociating from the end of the stacking faults and moving to a region in the substrate directly below the transistor gate structure. This removes the defects, which cause device leakage fail.
摘要:
A link portion between a first electrode and a second electrode includes a semiconductor link portion and a metal semiconductor alloy link portion comprising a first metal semiconductor alloy. An electrical pulse converts the entirety of the link portion into a second metal semiconductor alloy having a lower concentration of metal than the first metal semiconductor alloy. Due to the stoichiometric differences between the first and second metal semiconductor alloys, the link portion has a higher resistance after programming than prior to programming. The shift in electrical resistance well controlled, which is advantageously employed to as a programmable precision resistor.
摘要:
A method of fabricating a device using a sequence of annealing processes is provided. More particularly, a logic NFET device fabricated using a low temperature anneal to eliminate dislocation defects, method of fabricating the NFET device and design structure is shown and described. The method includes forming a stress liner over a gate structure and subjecting the gate structure and stress liner to a low temperature anneal process to form a stacking force in single crystalline silicon near the gate structure as a way to memorized the stress effort. The method further includes stripping the stress liner from the gate structure and performing an activation anneal at high temperature on device.
摘要:
A method of fabricating a device using a sequence of annealing processes is provided. More particularly, a logic NFET device fabricated using a low temperature anneal to eliminate dislocation defects, method of fabricating the NFET device and design structure is shown and described. The method includes forming a stress liner over a gate structure and subjecting the gate structure and stress liner to a low temperature anneal process to form a stacking force in single crystalline silicon near the gate structure as a way to memorized the stress effort. The method further includes stripping the stress liner from the gate structure and performing an activation anneal at high temperature on device.
摘要:
A method of forming a semiconductor device includes implanting an amorphizing species into a crystalline semiconductor substrate, the substrate having a transistor gate structure formed thereupon. Carbon is implanted into amorphized regions of the substrate, with specific implant conditions tailored such that the peak concentration of carbon species coincides with the end of the stacking faults, where the stacking faults are created during the recrystallization anneal. The implanted carbon pins partial dislocations so as to prevent the dislocations from disassociating from the end of the stacking faults and moving to a region in the substrate directly below the transistor gate structure. This removes the defects, which cause device leakage fail.
摘要:
Accordingly, in one embodiment of the invention, a method is provided for reducing stacking faults in an epitaxial semiconductor layer. In accordance with such method, a substrate is provided which includes a first single-crystal semiconductor region including a first semiconductor material, the first semiconductor region having a crystal orientation. An epitaxial layer including the first semiconductor material is grown on the first semiconductor region, the epitaxial layer having the crystal orientation. The substrate is then annealed with the epitaxial layer at a temperature greater than 1100 degrees Celsius in an ambient including hydrogen, whereby the step of annealing reduces stacking faults in the epitaxial layer.
摘要:
Accordingly, in one embodiment of the invention, a method is provided for reducing stacking faults in an epitaxial semiconductor layer. In accordance with such method, a substrate is provided which includes a first single-crystal semiconductor region including a first semiconductor material, the first semiconductor region having a crystal orientation. An epitaxial layer including the first semiconductor material is grown on the first semiconductor region, the epitaxial layer having the crystal orientation. The substrate is then annealed with the epitaxial layer at a temperature greater than 1100 degrees Celsius in an ambient including hydrogen, whereby the step of annealing reduces stacking faults in the epitaxial layer.
摘要:
An inline electron holograph method for observing a specimen with a transmission electron microscope having an electron gun, a collimating lens system, two spaced objective lenses, a biprism, and an imaging means comprises the steps of: with the first objective lens forming a virtual image of a portion of the specimen; with the second objective lens focussing the virtual image at an intermediate image plane to form an intermediate image; and projecting the intermediate image onto the imaging means.