Abstract:
A mobile platform efficiently processes image data, using distributed processing in which latency sensitive operations are performed on the mobile platform, while latency insensitive, but computationally intensive operations are performed on a remote server. The mobile platform acquires image data, and determines whether there is a trigger event to transmit the image data to the server. The trigger event may be a change in the image data relative to previously acquired image data, e.g., a scene change in an image. When a change is present, the image data may be transmitted to the server for processing. The server processes the image data and returns information related to the image data, such as identification of an object in an image or a reference image or model. The mobile platform may then perform reference based tracking using the identified object or reference image or model.
Abstract:
A context aware system, for use in a mobile device, includes a context change detector (CCD) coupled to a context classifier (CCL). The CCD is configured to receive sensor data and to detect a change in a current context state of the mobile device based on the received sensor data. The CCL is configured to transition from a low power consumption mode to a normal power consumption mode in response to the CCD detecting the change in the current context state. The CCL is further configured to determine a next context state of the mobile device while in the normal power consumption mode.
Abstract:
Methods, systems, computer-readable media, and apparatuses for determining indoor/outdoor state of a mobile device are presented. In some embodiments, a sensor reading is obtained from a sensor accessible by the mobile device. Contemporaneous information related to a local condition associated with an area where the mobile device is located is obtained. At least the sensor reading and the information related to a local condition are provided as input to an indoor/outdoor detection model selected from a plurality of trained models. Based on the model, the mobile device is classified as indoors or outdoors.
Abstract:
Systems and methods share context information on a neighbor aware network. A method for communicating data in a wireless communications network is disclosed. The method includes receiving, by a device, a first message from a station, decoding the message to determine service information, the service information identifying a service provided by the station, generating a second message, wherein the second message is generated to indicate the service provided by the station and service information of the device, and transmitting, by the device, the second message to a remote station.
Abstract:
A mobile device, such as a smartphone or a tablet computer, can execute functionality for configuring a network device in a communication network and for subsequently controlling the operation of the network device with little manual input. The mobile device can detect, from the network device, sensor information that is indicative of configuration information associated with the network device. The mobile device can decode the received sensor information to determine the configuration information and can accordingly enroll the network device in the communication network. In response to determining to control the enrolled network device, the mobile device can capture an image of the network device and can use the captured image to unambiguously identify the network device. The mobile device can establish a communication link with the network device and can transmit one or more commands to vary operating parameters of the network device.
Abstract:
Systems and methods for monitoring the number of neighboring wireless devices in a wireless network are described herein. In one aspect, the method includes receiving a message from one of the neighboring wireless devices having an identifier associated with the neighboring wireless device and adding the identifier into a Bloom filter. The method may further include estimating the number of distinct strings that have been added into the Bloom filter based on the number of zeros in the Bloom filter, the number of distinct strings representing an estimate of the number of neighboring wireless devices in the wireless network.
Abstract:
Methods and apparatus relating to enabling augmented reality applications using eye gaze tracking are disclosed. An exemplary method according to the disclosure includes displaying an image to a user of a scene viewable by the user, receiving information indicative of an eye gaze of the user, determining an area of interest within the image based on the eye gaze information, determining an image segment based on the area of interest, initiating an object recognition process on the image segment, and displaying results of the object recognition process.
Abstract:
Disclosed are systems and methods to optimize a rules engine as a platform within a computing system. The computing system may identify a context of interest, such as environment or circumstance of the computing system or a user of the computing system. Based on the identified context of interest, the rules engine platform may selectively identify rules or sets of rules that are relevant to the context of interest. Accordingly, rules or sets of rules that are irrelevant to the context of interest may be omitted from evaluation. Therefore, resources of the computing system may not consumed in some embodiments by resolving conflicts between rules and evaluating rules that result in actions that are not suitable for the context of interest.