Abstract:
A memory cell includes an elongated first electrode coupled to a magnetic tunnel junction (MTJ) structure and an elongated second electrode aligned with the elongated first electrode coupled to the MTJ structure. The elongated electrodes are configured to direct mutually additive portions of a switching current induced magnetic field through the MTJ. The mutually additive portions enhance switching of the MTJ in response to application of the switching current.
Abstract:
A memory device includes a magnetic tunnel junction (MTJ) bitcell. The MTJ bitcell includes a first MTJ and a second MTJ. The memory device further includes programming circuitry configured to generate a non-reversible state at the bitcell by applying a program signal to a selected one of the first MTJ and the second MTJ of the bitcell. The non-reversible state corresponds to a value of the MTJ bitcell that is determined by comparing a first value read at the first MTJ and a second value read at the second MTJ.
Abstract:
Material surrounding a magnetic tunnel junction (MTJ) device region of a multi-layer starting structure is etched, forming an MTJ device pillar having an MTJ layer with a chemically damaged peripheral edge region. De-nitridation or de-oxidation, or both, restore the chemically damaged peripheral region to form an edge-restored MTJ layer. An MTJ edge restoration assist layer is formed on the edge-restored MTJ layer. An MTJ-edge-protect layer is formed on the insulating MTJ-edge-restoration-assist layer.
Abstract:
Several novel features pertain to an automatic testing equipment (ATE) memory tester that includes a load board, a projected-field electromagnet, a positioning mechanism and a memory tester. The load board is for coupling to a die package that includes a magnetoresistive random access memory (MRAM) having several cells, where each cell includes a magnetic tunnel junction (MTJ). The projected-field electromagnet is for applying a portion of a magnetic field across the MRAM. The portion of the magnetic field may be substantially uniform. The positioning mechanism is coupled to the electromagnet and the load board, and is configured to position the electromagnet vertically about (above/below) the die package when the die package is coupled to the load board. The memory tester is coupled to the load board. The memory tester is for testing the MRAM when the substantially uniform portion of the magnetic field is applied across the MRAM.
Abstract:
A random number generator system that utilizes a magnetic tunnel junction (MTJ) that is controlled by an STT-MTJ entropy controller that determines whether to proceed with generating random numbers or not by monitoring the health of the MTJ-based random number generator is illustrated. If the health of the random number generation is above a threshold, the STT-MTJ entropy controller shuts down the MTJ-based random number generator and sends a message to a requesting chipset that a secure key generation is not possible. If the health of the random number generation is below a threshold, the entropy controller allows the MTJ-based random number generator to generate random numbers based on a specified algorithm, the output of which is post processed and used by a cryptographic-quality deterministic random bit generator to generate a security key for a requesting chipset.
Abstract:
A perpendicular magnetic tunnel junction (MTJ) apparatus includes a tunnel magnetoresistance (TMR) enhancement buffer layer deposited between the tunnel barrier layer and the reference layers An amorphous alloy spacer is deposited between the TMR enhancement buffer layer and the reference layers to enhance TMR The amorphous alloy spacer blocks template effects of face centered cubic (fcc) oriented pinned layers and provides strong coupling between the pinned layers and the TMR enhancement buffer layer to ensure full perpendicular magnetization.
Abstract:
A memory cell comprises a magnetic tunnel junction (MTJ) structure that includes a free layer coupled to a bit line and a pinned layer. A magnetic moment of the free layer is substantially parallel to a magnetic moment of the pinned layer in a first state and substantially antiparallel to the magnetic moment of the pinned layer in a second state. The pinned layer has a physical dimension to produce an offset magnetic field corresponding to a first switching current of the MTJ structure to enable switching between the first state and the second state when a first voltage is applied from the bit line to a source line coupled to an access transistor and a second switching current to enable switching between the second state and the first state when the first voltage is applied from the source line to the bit line.
Abstract:
A memory device includes a magnetic tunnel junction (MTJ) bitcell. The MTJ bitcell includes a first MTJ and a second MTJ. The memory device further includes programming circuitry configured to generate a non-reversible state at the bitcell by applying a program signal to a selected one of the first MTJ and the second MTJ of the bitcell. The non-reversible state corresponds to a value of the MTJ bitcell that is determined by comparing a first value read at the first MTJ and a second value read at the second MTJ.
Abstract:
In a particular embodiment, a method of forming a magnetic tunnel junction (MTJ) device includes forming an MTJ cap layer on an MTJ structure and forming a top electrode layer coupled to the MTJ cap layer. The top electrode layer includes at least two layers and one layer of the two layers includes a nitrified metal.
Abstract:
In a Spin Transfer Torque Magnetoresistive Random Access Memory (STT-MRAM) a bit cell array can have a source line substantially parallel to a word line. The source line can be substantially perpendicular to bit lines. A source line control unit includes a common source line driver and a source line selector configured to select individual ones of the source lines. The source line driver and source line selector can be coupled in multiplexed relation. A bit line control unit includes a common bit line driver and a bit line selector in multiplexed relation. The bit line control unit includes a positive channel metal oxide semiconductor (PMOS) element coupled between the common source line driver and bit line select lines and bit lines.