Abstract:
Various additional and alternative aspects are described herein. In some aspects, the present disclosure provides a method of communication by an apparatus. The method includes selecting one or more resources for transmitting data of a first data stream based on an acyclic graph. The selected resources conform to the acyclic graph comprising data streams at odd levels of the acyclic graph and resources at even levels of the acyclic graph. The acyclic graph includes edges between each level of the acyclic graph. The edges connect the resources allocated to each data stream. The method further includes transmitting the data of the first data stream on the selected one or more resources.
Abstract:
Certain aspects of the present disclosure provide techniques for co-existence of reliable low-latency and other services in a wireless network. According to certain aspects, a method of wireless communication by a base station is provided. The method generally includes reserving a first region of a set of resources to a first user for at least a first uplink transmission related to a first type of service, receiving the first uplink transmission in the reserved first region, and dynamically assigning resources in a second region of the set of resources for at least a second uplink transmission related to the first type of service.
Abstract:
Wireless communications systems and methods related to decoupling uplink latency using common uplink (UL) burst in Time Division Duplex (TDD) sub-frame structure are disclosed. User equipment (UE) can transmit to a base station a common UL burst in each sub-frame communicated between UE and the base station, wherein he common UL burst comprises at least one of: a physical layer (PHY) acknowledgement (ACK), a scheduling request (SR), a buffer status report (BSR), or a sounding reference signal (SRS). UE can be further configured to transmit scheduled UL payload data in at least one common UL burst of at least one sub-frame communicated between the UE and the base station.
Abstract:
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided that may be configured to receive a downlink control message, to determine a beta offset value for transmitting UCI based at least in part on the downlink control message, and to transmit the UCI on an uplink shared channel interleaved with data based on the determined beta offset value. The apparatus may identify the beta offset from a set of values based on the downlink control message. An apparatus may identify resources allocated for PUSCH and may map UCI to the identified resources for PUSCH in a frequency interleaved manner over a bandwidth of the identified resources. The apparatus may map data to the identified resources in a time-first or frequency-first manner, and may transmit a signal comprising UCI and data on the identified resources of the PUSCH in accordance with the mapping.
Abstract:
Aspects of the present disclosure provide systems, methods, and apparatuses for implementing the multiplexing of different orthogonal frequency-division multiplexing (OFDM) waveforms using a transmitter and receiver configured to process different types of signals without a need for distinct hardware structures. In one example, aspects of the present disclosure may include a transmitter configured to transmit both a first type of discrete fourier transform (DFT)-spread OFDM waveform and a second type of DFT-spread OFDM waveform that may be multiplexed over the wireless channel. In some aspects, the transmitter may modify the numerology of the zero-tail DFT-spread OFDM waveform to match the numerology of other OFDM waveforms (e.g., OFDM waveform with zero-guard or a single carrier DFT-spread OFDM with zero-guard).
Abstract:
According to aspects, a BS may determine presence of a narrow GB or lack of a GB to separate a first RB used for DL transmission from the BS to a first UE and a second RB used for DL transmission from the BS to a second UE. In response to the determination, the BS may transmit, to the first UE, interference information associated with the transmission from the BS to the second UE. According to aspects, a BS may determine a presence of a narrow GB or lack of a GB to separate a first RB used for UL transmission from a first UE to the BS and a second RB used for UL transmission from a second UE to the BS. In response to the determination, the BS may transmit to the first UE, interference information associated with the UL transmission from the second UE to the BS.
Abstract:
Various aspects described herein relate to distinguishing frequency shift keying (FSK) signals transmitted by each user of multiple users in a wireless communications system. One or more symbols for transmitting in an FSK-modulated signal can be obtained by a user. The one or more symbols can be encoded based on a tone location assignment corresponding to a unique spreading code associated with the user. Quadrature amplitude modulation (QAM) and/or phase-shift keying (PSK) can be performed over at least one tone associated with the encoded symbols. Each user can transmit the encoded symbols to a receiving entity, where the receiving entity can decode each symbol received from the plurality of users to produce a distinguishable symbol for each user based on the unique spreading codes associated with each user.
Abstract:
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be configured to receive a plurality of combined signals. Each combined signal may be on a tone of a plurality of tones. The apparatus may be configured to determine a first pilot signal on a first tone of the plurality of tones. The apparatus may be configured to generate an interference-reduced signal for the first tone by canceling the determined first pilot signal from a first combined signal on the first tone.
Abstract:
Certain aspects of the present disclosure generally relate to techniques for distributed scheduling to control interference for small data transactions using grant-less transmissions. A method for wireless communications by wireless node is provided. The method generally includes receiving, from a base station, a list of supported modulation and coding schemes (MCS) and at least one parameter to control interference, determining a data rate and duration for a grant-less transmission based on the list of supported MCS and the at least one parameter, selecting access resources to use for the grant-less transmission from a common pool of resources configured to be shared by a plurality of wireless nodes for grant-less transmissions, and transmitting the grant-less transmission using the selected access resources, at the determined data rate and for the determined duration.
Abstract:
Various aspects of the present disclosure provide for methods, apparatus, and computer software for transmitting a common uplink burst in time division duplex (TDD) carriers. The common uplink burst includes a sounding reference signal (SRS) transmitted separate from (e.g., decoupled from) a demodulation reference signal (DM-RS). At least one symbol in the common uplink burst includes a control region for carrying control information and a data region for carrying data information. The SRS may be precoded separately from precoding of the control and data regions, so that the control and/or data information may be transmitted utilizing multiple input multiple output (MIMO).