Abstract:
The disclosure relates to reducing Wi-Fi interference from small cells that provide cellular coverage in unlicensed bands. In particular, in response to determining that a small cell is substantially unloaded (e.g., has traffic below a threshold), the small cell may be switched to a reduced interference configuration. For example, the small cell may be switched to a low downlink configuration to reduce interference in a time domain and/or a low bandwidth configuration to reduce interference in a frequency domain. Alternatively (or additionally), the small cell and/or any other small cells that have traffic below the threshold may switch to the same frequency and/or channel number to concentrate all possible interference on the same frequency and/or channel number. Further still, the configuration may be switched in a power domain, where a transmit power associated with the small cell may be adapted based on cellular measurements in combination with Wi-Fi measurements.
Abstract:
The present disclosure presents a method and an apparatus for distributed updating of a self organizing network. For example, the disclosure presents a method for transmitting, via a transmitting component at a base station, a portion of data collected at the base station to a network entity, wherein the data collected at the base station is received by the base station from one or more user equipments (UE) in communication with one or more base stations, wherein the base station is one of the one or more base stations, receiving feedback, from the network entity, associated with one or more network parameters of the base station, wherein the feedback received from the network entity is determined at the network entity at least based on the portion of data transmitted from the one or more base stations to the network entity, and updating the one or more network parameters at the base station based on the feedback received from the network entity and local information at the base station. As such, distributed updating of a self organizing network may be achieved.
Abstract:
Methods and apparatus for communication comprise aspects that include performing a power management procedure for configuring a subset of network entities to receive one or more of downlink signal measurements and/or one or more uplink signal measurements. The methods and apparatus further comprise aspects that include storing the one or more one or more of downlink signal measurements and/or one or more uplink signal measurements associated with the subset of network entities at a database for managing transmit power at the subset of network entities. Moreover, the methods and apparatus comprise aspects that include adjusting a transmit power value of at least one of the subset of network entities from a first transmit power value to a second transmit power value based at least in part on the one or more of downlink signal measurements and/or one or more uplink signal measurements.
Abstract:
Range tuning for open access small cells may be achieved, for example, by determining a likelihood of handoff for a mobile device around a small cell coverage area, and adjusting a range of the small cell coverage area by controlling a transmit power level of the small cell based on the likelihood of handoff.
Abstract:
A small cell (e.g., femtocell) in a wireless communication may determine a set of wireless signal measurements for a plurality of small cells causing pilot cell pollution within a coverage area. The small cell may determine an adjustment of a transmission parameter of the small cells for reducing the pilot cell pollution, and transmit the adjustment to the small cells. The adjustment may include, for example, minimizing an area of overlap between at least two small cells having signal power difference below a threshold, maximizing a signal to interference and noise ratio at a location associated with at least two small cells, minimizing an area associated with at least two pilot signals within a threshold signal level, distributing traffic load to at least two of the small cells based on the set of measurements, or by minimizing the number of small cells covering a path.
Abstract:
Disclosed are system and method for classifying an indoors location of a femtocell or femto node. In an aspect, the system and method are configured to perform, by a femto node, radio frequency (RF) measurements of one or more neighboring femtocells and macrocells; collect performance measurement reports from one or more mobile devices; classify the indoors location of the femto node based on the performed RF measurements and the collected performance measurement reports; and adjust one or more RF resources and parameters of the femto node based on the indoors location classification of the femto node.
Abstract:
Apparatus and methods for managing a load in a network of femto nodes are described herein. One or more parameters corresponding to a resource load on a femto node may be detected. The power of the femto node may be adjusted based on the one or more parameters to decrease a resource load on the femto node. One or more other femto nodes may then be notified of the power adjustment.
Abstract:
Described herein are aspects related to assigning primary channels in wireless communications. An amount of available bandwidth within a radio frequency band can be determined for shared access by a plurality of operators, where each operator operates a radio access network having one of a plurality of radio communication compatibility types, and where each radio communication compatibility type defines a set of one or more compatible radio access technologies. The amount of available bandwidth can be allocated into radio compatibility type-specific bandwidth partitions for each radio communication compatibility type based on a number of the plurality of radio communication compatibility types and a number of the plurality of operators corresponding to each radio communication compatibility type. A primary channel can be assigned within at least one of the radio compatibility type-specific bandwidth partitions to at least one operator of the number of the plurality of operators.
Abstract:
The present disclosure describes a method and an apparatus for communicating during a network listen (NL) mode at a base station. For example, a method is provided for communicating during a network listen (NL) mode at a base station. The example method may include generating a first random number during a first time slot of the NL mode and setting a value of a counter at the base station to the random number generated at the base station. A determination is made whether the base station detects at least one new neighbor base station during the first time slot and the value of the counter is decreased when at least one new neighbor base station is detected during the first time slot. The base station transmits a signal during the first time slot when the value of the counter is determined to be zero.
Abstract:
Aspects are disclosed for facilitating a hand-in to a femto cell. An identifier is assigned to a femto cell in which the identifier is based on a scrambling parameter and a timing parameter. A relationship between the identifier and the femto cell is then communicated. In another embodiment, a user equipment report is received, which includes attributes related to a signal broadcast by a femto cell. An identifier associated with the femto cell is ascertained from an attribute included in the report. The femto cell is then identified based on the identifier. In a further embodiment, a timing parameter is received, and a scrambling parameter is set. A signal including the scrambling parameter is then broadcast according to an offset related to the timing parameter. In yet another embodiment, a femto cell is detected during an active call. An identifier associated with the femto cell is then ascertained and reported.