Abstract:
Methods and systems for controlling an electric motor are provided. An electric motor controller is configured to be coupled to an electric motor. The controller includes a rectifier, an inverter coupled to the rectifier, and a control unit coupled to the inverter. The rectifier is configured to rectify an alternating current (AC) input voltage to produce a pulsed direct current (DC) voltage that drops to approximately zero during each cycle when the AC input voltage transits zero. Energy is stored on a load coupled to the motor when AC input voltage is available. The inverter is configured to receive the DC voltage and to provide a conditioned output voltage to the motor. The control unit is configured to manage energy transfer between the motor and the load such that the motor generates positive torque when the DC voltage supplied to the inverter has approximately 100% voltage ripple.
Abstract:
A motor control assembly for an electric motor. The motor control assembly is configured to be coupled to the electric motor, and includes a wireless communication module, an input power connector, and an inverter module. The wireless communication module is configured to receive a wireless signal from a system controller. The input power connector is configured to receive a DC voltage from an external power supply module. The inverter module is coupled to the wireless communication module and the input power connector. The inverter module is configured to convert the DC voltage to an AC voltage to operate the electric motor according to the wireless signal.
Abstract:
An electric motor controller and methods of determining which input power line of a plurality of input power lines of a motor drive controller has been energized are provided. An electric motor controller configured to be coupled to an electric motor includes a plurality of power input lines configured to receive an alternating current (AC) input voltage from an AC power source, an energized line detection device configured to sense that a power input line has been energized by the AC power source, and configured to output an isolated signal, and a rectifier configured to convert the AC input voltage having a frequency to a direct current (DC) voltage. The controller also includes a computing device coupled downstream from the energized line detection device and configured to determine which input power line has been energized.
Abstract:
Hybrid motor drive circuits configured to drive a motor are provided herein. A hybrid motor drive circuit includes an inverter coupled to the motor and configured to drive the motor when a motor commanded frequency is not within a predetermined range of line input power frequencies. The hybrid motor drive circuit also includes a first switch device configured to couple line input power to an output of the inverter when the motor commanded frequency is within the predetermined range of line input power frequencies.
Abstract:
Methods and systems for controlling an electric motor are provided herein. The system is configured to be coupled to a power supply. The electric motor system includes a rectifier, an electric motor, and a microcontroller. The rectifier is configured to convert an alternating current (AC) voltage input to a direct current (DC) voltage. The microcontroller is configured to extract power from a generator device.
Abstract:
A fluid flow system is provided. The system includes a rotation producing device, a first fluid flow device coupled to the rotation producing device and a second fluid flow device coupled to the rotation producing device and spaced from the first fluid flow device.
Abstract:
A motor control system for heating, ventilation, and air conditioning (HVAC) applications is described. The motor control system includes a thermostat and an electronically commutated motor (ECM) coupled to the thermostat. The ECM is configured to retrofit an existing non-ECM electric motor included in an HVAC application and to operate in one of a plurality of HVAC modes. The HVAC modes include at least one of a heating mode, a cooling mode, and a continuous fan mode. The HVAC mode is determined based at least partially on outputs provided by the thermostat.
Abstract:
A motor controller coupled to a motor is provided. The motor controller includes a processor, a memory coupled to the processor, a first input coupled to the processor, wherein the first input is associated with a first mode of operation, and a second input coupled to the processor, wherein the second input is associated with a calibration mode. The motor controller is configured to receive, through the first input, a first activation signal, operate the motor in the first mode of operation in response to receiving the first activation signal, while operating the motor in the first mode of operation, receive, through the second input, a second activation signal, in response to receiving the first activation signal and the second activation signal, adjust a value of a parameter associated with the first mode of operation, and store the value of the parameter in the memory.
Abstract:
A control system for a motor includes an inverter coupled to the motor. The control system further includes a microcontroller coupled to the inverter. The microcontroller includes a processor programmed to measure an input voltage and acquire a back EMF voltage of the motor. The processor is also programmed to control the inverter to regulate the motor voltage based on the input voltage and the back EMF voltage to facilitate controlling the motor.
Abstract:
Protection of a motor controller from a transient voltage and/or an over-voltage condition is described. A drive circuit includes a rectifier portion and at least one inductive device coupled to the rectifier portion. The drive circuit further includes at least one voltage clamping device coupled in parallel with the at least one inductive device, and at least one switching device configured to open as a function of a direct current (DC) link voltage value.