Abstract:
A hybrid battery power source for implantable medical use provides a generally constant low internal resistance during discharge and avoids voltage delays of the type that develop as a result of run down-induced resistance increase in Li/SVO cells. The hybrid battery power source utilizes two batteries or cells, one being a primary cell of relatively high energy density and the other being a secondary cell of relatively low internal resistance that is rechargeable. The primary and secondary cells are connected in a parallel arrangement via a voltage boost/charge control circuit that is powered by the primary cell and adapted to charge the secondary cell while limiting charge/discharge excursions thereof in a manner that optimizes its output for high energy medical device use. The energy storage capacitors of the medical device in which the hybrid battery power source is situated are driven by the secondary cell. The primary cell is used to as an energy source for recharging the secondary cell.
Abstract:
A method and apparatus for providing germicidal and healing treatment of tissue such as bone wherein an electrode of silver or like material is applied to a living tissue site to be healed, initially a direct voltage is applied to the electrode of a polarity driving the electrode as an anode to release silver ions to create a germicidal environment at the site, and thereafter a direct voltage of opposite polarity is applied to the electrode driving it as a cathode to stimulate healing of the tissue at the site. The apparatus is implanted in the body of a patient, and in one embodiment a battery is connected through a switch to the electrode and a reference electrode, the switch initially connecting the electrode as an anode and thereafter changeable by an external operator such as a magnet to connect the electrode as a cathode. In another embodiment, another electrode and an element cooperate with the treating electrode to form a galvanic couple with the treating electrode to create a germicidal environment and a predetermined time thereafter the arrangement changes to a biogalvanic couple with body fluid to cause healing of the tissue. In either embodiment a wave shaping circuit can be operatively associated with the treating electrode to facilitate external monitoring of the apparatus when implanted.
Abstract:
An artificial cardiac pacer including a pulse source of relatively high and constant frequency, such as a quartz crystal oscillator, and a frequency divider for converting the source pulses to a lower frequency suitable for application to pacer electrodes for heart stimulation is provided with a pulse rate controller operatively connected to the frequency converter for inhibiting a predetermined number of pulses in each time interval to change the frequency of pulses applied to the pacer electrodes. An external controller operatively coupled to the pulse rate control generates first and second command signals in response to manual selection which are received by the pulse rate control and cause an increase or decrease in the number of pulses inhibited.
Abstract:
A cardiac pacer having an alkali metal-halogen cell comprising an alkali metal anode, preferably lithium, a solid alkali metal-halogen electrolyte and a cathode comprising a mixture of two halogens, for example iodine and bromine, the two halogens providing discharge of the cell at two different levels of cell output voltage. The two halogens are in different proportions by weight of the mixture thereby providing a two step output voltage-time characteristic. The second step or plateau in the output voltage characteristic provides an early warning of pacer battery exhaustion.
Abstract:
An electromagnetic immune tissue invasive system includes a primary device housing. The primary device housing having a control circuit therein. A shielding is formed around the primary device housing to shield the primary device housing and any circuits therein from electromagnetic interference. A lead system transmits and receives signals between the primary device housing. The lead system is either a fiber optic system or an electrically shielded electrical lead system.
Abstract:
In accordance with the present invention, disclosed is a method of conferring, upon a host cell, resistance to retroviral infection by interfering with one or more of the infection processes including retroviral replication and assembly into infective viral particles. The method involves introducing a vector into a host cell, wherein the vector comprises a polynucleotide which directs transcription, within the host cell, of RNA which is a) complementary or corresponding, depending on the target region, to a nucleic acid sequence within one or more regions of the genome of the retrovirus; and b) is effective in inhibiting one or more steps in the retroviral infection process by interfering with retroviral replication, reverse transcription, translation, or assembly into viral particles when the host cell is infected. Also disclosed is a method of treatment using the nucleic acid constructs, or cells upon which resistance to infection has been conferred.
Abstract:
A method and apparatus for killing plant and animal bacteria and plant viroids by electrically generated silver ions. The silver ions serve as germicidal agents in infection control and are generated by very slow electrical anodic corrosion of a silver wire located closely adjacent the infection site. In particular, a silver anode and a cathode of non-corroding metal are located in an electrolytic nutrient medium with the silver anode being within five millimeters of the infection site, and a direct voltage is applied to the anode and cathode in a manner passing a positive current in the microampere range into the silver anode causing it to corrode slightly and give off silver ions which produce a germicidal environment about the infection site.
Abstract:
An alkali metal-halogen cell comprising an alkali metal anode, preferably lithium, a solid alkali metal-halogen electrolyte and a cathode comprising a mixture of two halogens, for example iodine and bromine, the two halogens providing discharge of the cell at two different levels of cell output voltage. The two halogens are in different proportions by weight of the mixture thereby providing a two step output voltage-time characteristic. The cell advantageously can be employed in a battery for an artificial cardiac pacer.
Abstract:
An improved 3He nuclear reactor with provision for direct electric conversion of a relativistic proton stream into useable electric power at a voltage level compatible with the national power grid (one million V DC). Various embodiments include multiple collector cages for extracting relativistic protons of various energy levels, diverter wires for deflecting high-energy proton streams to either side of lower energy cages to avoid unwanted impact. Other embodiments include arrangements for dividing multi-megavolt voltages down to a useable one megavolt level compatible with the national power grid. Further embodiments comprise guiding the proton stream by the cusps of magnetron cavities to permit conversion of the relativistic proton energies into microwave power. A proposal is also made for harvesting 3He from the Moon to supply earth-bound and space-bound reactors. A solution to the problem of charging a potential well-forming anode in an electrostatic fusion reactor without electrical arcing is further disclosed.
Abstract:
A high energy battery power source suitable for use in an implantable medical device includes an input, an output, and two or more battery modules each comprising two or more battery cells. The battery cells are of relatively low voltage and permanently configured within each battery module in an electrically parallel arrangement in order to provide a desired current discharge level needed to achieve high-energy output. A switching system configures the battery modules between a first configuration wherein the battery modules are electrically connected in parallel to each other and to the input in order to receive charging energy at the relatively low voltage, and a second configuration wherein the battery modules are electrically connected in series to each other in order to provide to the output a relatively high voltage corresponding to the number of battery modules at a current level corresponding to the number of battery cells in a single battery module. An alternate embodiment permanently connects the battery modules in series so that no switching system is need for discharging and charging. A technique that provides for the control of discharge voltages on a pulse-to-pulse basis is also disclosed.