摘要:
A magnetic disk storage system is disclosed wherein byte synchronization to sector data is achieved even when noise in the read channel, due for instance to a thermal asperity (TA), corrupts the primary preamble and/or sync mark fields or causes a loss of frequency or phase lock. The data sector format is modified to comprise at least one secondary sync mark in addition to the conventional primary sync mark recorded at the beginning of the data field. In this manner, when the primary sync mark becomes undetectable due to errors, or when byte synchronization is lost, the storage system can still synchronize to the data sector using the secondary sync mark. The secondary sync mark is preferably spaced apart from the primary sync mark with either a gap (no data) or user data inserted inbetween. In the latter embodiment, two methods are employed to recover user data inbetween the primary and secondary sync marks when the primary sync mark is undetectable: on-the-fly erasure pointer error correction, and buffering to facilitate retroactive synchronization. The secondary sync mark may optionally include a secondary preamble to facilitate phase locking to the data when the primary preamble is corrupted by errors. The present invention also provides "split segment" resynchronization for synchronizing a first section of data using a first mark, and retroactively synchronizing a second section of data using a following sync mark when synchronization is lost.
摘要:
A disc storage system comprising a sector level ECS for correcting errors within a sector during readback, and a track level ECS for correcting a sector that becomes unrecoverable at the sector level either because the number of hard errors exceeds the error correction capability of the sector redundancy, or because the sector is unreadable due, for instance, to an inability to synchronize to the sector data. A data buffer stores the data sectors, and a redundancy buffer stores the track level redundancy data. If during a read operation a data sector is determined to be unrecoverable using the sector level redundancy, the storage system corrects the unrecoverable sector using the track level redundancy.
摘要:
A defect management system is disclosed for disc storage systems which avoids the access latency associated with conventional linear replacement techniques by dispersing spare segments throughout each track at a regular interval and buffering sectors inbetween a defective sector and the corresponding spare segment during read and write operations. In one embodiment, a spare segment is an entire sector which replaces a defective data sector; and in an alternative embodiment, a spare segment stores only the defective portion of a data sector which is more efficient, but also more complicated in implementation. In both embodiments, the defect management system comprises a defect locator for locating a defective segment within a data sector. Once located, the defect management system maps the defective sector (or the defective portion thereof) to the nearest available spare segment. Then when accessing the track that comprises the defective sector, the data sectors between the defective segment and corresponding spare segment are buffered in a data buffer, and an area in the data buffer is reserved for storing the data associated with the spare segment. In this manner, data can be written to and read from the track in a contiguous sequence without requiring an extra revolution of latency as in the conventional linear replacement defect mapping techniques.
摘要:
In a disc drive storage system employing a track level redundancy sector for reconstructing a data sector unrecoverable at the sector level, the latency of the storage system is minimized by performing a write operation according to the following steps: 1. seek to the target track corresponding to the sector(s) to be written; 2. once at the target track, wait for the recording head to reach the first sector in the track (sector 0); 3. begin reading and processing the sectors in the target track to regenerate the redundancy sector; 4. when the recording head reaches the target sector(s), combine the new data sector(s) with the regenerated redundancy sector, switch to a write operation, and write the new sectors to the track; 5. after writing the new data sectors to the track, switch back to a read operation and continue reading the data sectors in the track and combining them with the regenerated redundancy sector; and 6. when the recording head reaches the redundancy sector, which is preferably the last sector on the track, switch to a write operation and write the regenerated redundancy sector to the track.
摘要:
Apparatus and methods are disclosed for providing an improved system for identifying the location and value of errors introduced in binary data encoded using Reed-Solomon and related codes and to detect miscorrections of such codes with an auxiliary code. The invention employs an architecture based on a microcode engine that is specialized for error identification and that supports interleaved codewords. This architecture can be efficiently fabricated as an integrated circuit, yet is capable of identifying multiple introduced errors "on the fly" i.e. with performance sufficient to not significantly slow the process of reading from data storage or transmission subsystems such as, but not limited to, optical disks. In the preferred embodiment, a new two-step method of error syndrome computation is employed to reduce circuit cost and complexity. An improved iterative algorithm is provided which reduces circuit cost and complexity and decreases the time required to generate the error locator polynomial. Cyclic redundancy check (CRC) information is adjusted as introduced errors are identified during the Chien search, thus reducing the time required to protect against ECC miscorrection. Externally-specified error thresholds allow detection of excessive numbers of errors.
摘要:
Disclosed is a pulse detector that uses four samples of an analog signal to detect a pulse as soon as one sample beyond the time of the peak of the signal level at the pulse. The pulse detector can detect pulses by sampling at the center of a peak of the pulse or by sampling at either side of the peak of the pulse. The pulse detector detects pulses while tracking data, and it uses an alternate detection system for detecting pulses while acquiring timing and gain lock on a signal having a known data pattern. The detector uses either the sampled signal levels directly, or a moving average of two samples to perform the detection.
摘要:
A Viterbi detector is modified to reduce its implementation complexity. A partial-response signal may be viewed as a sequence of expected samples generated from a finite-state-machine model. In a typical Viterbi demodulator implemented using the add, compare, select (ACS) method, each state in the expected sample sequence model is associated with a hardware module to perform the functions of adding new branch error metrics to path error metrics, comparing path error metrics, and selecting the path having the lowest path error metric. In this invention, an ACS module may have two or more sequence-model states dynamically associated with it, such that at some times one sequence-model state is associated with it and at other times another sequence-model state is associated with it. This reduces the number of ACS modules required and also reduces the size/complexity of the demodulator's path memories which must store one path for each ACS module. Groups of sequence-model states may be chosen to share an ACS module without significant loss in performance as compared to the original, unreduced Viterbi demodulator. The invention supports a wide range of sample models by making the expected sample sequence of an isolated medium transition programmable. The invention reduces the speed at which the detector circuitry must operate relative to the sample rate by allowing multiple samples to be processed simultaneously. Several reduced detectors for specific sample sequence models are presented for particular applications. The invention is applicable to other types of Viterbi detectors, such as decoders for convolutional codes.
摘要:
A Loss of Lock Detector and Re-lock Control function using digital techniques to detect a programmable difference in frequencies over a programmable range. Once Loss of Lock is detected, the Re-lock sequence is initiated and PLLIS, PLLMS & PLLGS are stepped through a programmable sequence. The invention detects the frequency difference by counting down two counters and evaluating the value left in one when the other reaches terminal count using a programmable tolerance of frequency differences before Loss of Lock is declared. The complexity and cost of implementation of the invention is reduced by multiple use of a single down counter. Other features of the invention are disclosed.
摘要:
A synchronous read channel having a single chip integrated circuit digital portion which provides digital gain control, timing recovery, equalization, digital peak detection, sequence detection, RLL(1,7) encoding and decoding, error-tolerant synchronization and channel quality measurement is disclosed. The integrated circuit accommodates both center sampling and side sampling, and has a high degree of programmability of various pulse shaping and recovery parameters and the ability to provide decoded data using sequence detection or digital peak detection. These characteristics, together with the error-tolerant sync mark detection and the ability to recover data when the sync mark is obliterated, allow a wide variety of retry and recovery strategies to maximize the possibility of data recovery. Various embodiments, including an embodiment incorporating the analog functions as well as the primary digital functions of the read channel in a single integrated circuit, and preferred embodiments utilizing a reduced complexity, programmable modified Viterbi detector supporting a broad class of partial response channels are disclosed.
摘要:
A synchronous read channel having a single chip integrated circuit digital portion which provides digital gain control, timing recovery, equalization, digital peak detection, sequence detection, RLL(l,7) encoding and decoding, error-tolerant synchronization and channel quality measurement is disclosed. The integrated circuit accommodates both center sampling and side sampling, and has a high degree of programmability of various pulse shaping and recovery parameters and the ability to provide decoded data using sequence detection or digital peak detection. These characteristics, error-tolerant sync mark detection, and the ability to recover data when the sync mark is obliterated allow a wide variety of retry and recovery strategies to maximize the possibility of data recovery. Various embodiments, including an embodiment incorporating analog as well as digital functions of the read channel in a single integrated circuit, and embodiments utilizing a reduced complexity, programmable modified Viterbi detector supporting a broad class of partial response channels are disclosed.